Lessons From Managing Geospatial Data

- Challenge: Big variation in data formats and volume
 - Lesson 1: "Cheap" vs. "expensive" data
 - Lesson 2: The rise of standardization, opensource software, and large geospatial datasets
- Challenge: Large amount of users and potentially complex simultaneous requests
 - Lesson 3: From software to services
 - Lesson 4: Telemetry turns behavior into data
- Challenge: Much labor needed to derive knowledge from varied data
 - Lesson 5: Embed intelligence in services

Questions for Discussion

- Lesson 1: "Cheap" vs. "expensive" data
 - What kinds of data are "cheap" or "expensive" in the context of breeding?
 - Which data has the potential to become "cheap" in the near future?
- Lesson 2: The rise of standardization, open-source software, and large geospatial datasets
 - Is industry-wide cooperation and standardization an option to deal with new data challenges?
 - If so, in which contexts? How could cooperation be operationalized?
 - Would you describe a specific data management problem that you would like to work on together with other industry participants?

Questions for Discussion

Lesson 3: From software to services

 Which high-value software services could be offered to both internal and external customers of breeders?

Lesson 4: Telemetry turns behavior into data

 How can usage logs from geospatial services provide information that is valuable for breeders?

Lesson 5: Embed intelligence in services

- What plentiful and high-quality data sources with large data volumes can be exploited in breeding for prediction?
- Which data sources are abundant in volume and correlate with any of the outcomes being monitored during breeding processes?

Questions for Discussion

- Lesson 1: "Cheap" vs. "expensive" data
 - What kinds of data are "cheap" or "expensive" in the context of breeding?
 - Which data has the potential to become "cheap" in the near future?
- Lesson 2: The rise of standardization, open-source software, and large geospatial datasets
 - Is industry-wide cooperation and standardization an option to deal with new data challenges?
 - If so, in which contexts? How could cooperation be operationalized?
 - Would you describe a specific data management problem that you would like to work on together with other industry participants?
- Lesson 3: From software to services
 - Which high-value software services could be offered to both internal and external customers of breeders?
- Lesson 4: Telemetry turns behavior into data
 - How can usage logs from geospatial services provide information that is valuable for breeders?
- Lesson 5: Embed intelligence in services
 - What plentiful and high-quality data sources with large data volumes can be exploited in breeding for prediction?
 - Which data sources are abundant in volume and correlate with any of
 the outcomes being monitored during breeding processes?

