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What do breeders do?
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Traits and 
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Cycles of selection and evaluation in breeding

Phenotypic prediction 

- Increase intensity (more throughput)
- Increase heritability (more precision)

Correlated vs Direct Response

- A challenge for physiologists !

Genetic Gain – the breeder’s equation 

Pij = µ + Gi + Ej + (GE)ij. 

years per cycle

Chapman et al 2012
Crop & Pasture Science 63:251-268
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Over stages of selection: Small population size, 
reduced selection intensity and reduced 2

G

Field nursery is the bottleneck (and limit) – it sets the bar on the upper limit on the mean,
potential line extremes/transgressives, and broader genetic variance

Breeders select while trying to maintain genetic variance from which selection (and progress) is
made later with replicated plots. Heritability is small and so selection pressure (intensity) is relaxed

Crossing Glasshouse Nursery Stage 1 & 2 Stage 3 & 4

Population size and genetic variance
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Types of traits

• Agronomic
• Establishment scores

• Plant stand counts

• Canopy height

• Heading/anthesis/flowering timing and 
patterns

• Ear counts

• Disease monitoring

• Physiological/dynamic
• Leaf and root system characteristics

• Estimation of derived parameters, e.g. light 
extinction, radiation use efficiency

• Water productivity, stress indices

• Predicting adaptation across environments
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Statistical and dynamic modelling of phenotypes

van Eeuwijk et al 2018 Plant Science
Modelling strategies for assessing and 
increasing the effectiveness of new 
phenotyping techniques in plant breeding

https://doi.org/10.1016/j.plantsci.2018.06.018
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• Feature extraction

• Design/spatial trends

• Dynamic modelling

• Modelling Env effects

• Target Trait Prediction

van Eeuwijk et al 2018 Plant 
Science (online)

https://doi.org/10.1016/j.plantsci
.2018.06.018
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What is APSIM?

A highly advanced agricultural systems model created:
• To model system performance over time
• With an equal emphasis on crop and soil dimensions 
• With a capability to deal comprehensively with management matters

An open and transparent ‘APSIM Community Source 
Framework’ (modified open source)

Free public good licensing (R&D and education)

Development and maintenance is underpinned by rigorous 
science and software engineering standards

Owned by The APSIM Initiative
www.apsim.info



• Established in the early 1990’s (then as APSRU) to promote the 
development and use of the science modules and infrastructure 
software of APSIM 

• APSIM development, maintenance and commercialisation are the 
responsibility of the AI

• Foundation Members of the AI:
– CSIRO
– the State of Queensland (Dept of Agric, F & F) 
– the University of Queensland
– AgResearch (New Zealand)

• Strategic direction guided by the Steering Committee
• Science quality control maintained by the Reference Panel

The APSIM Initiative (AI)



- Captures tangled web of dynamic interactions & feedbacks

- Understanding can be built up from multiple platforms

Hammer et al. 2010
J Exp Bot, 61:2185-2202

No equations to see here:

Crop models to organise phenotyping across scales…
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Variability in space and time
- examples with indoor platforms



IR imaging

LiDAR: Distance and 
Intensity

multi- and hyper-
spectral  imaging

λ

Sirault et al. (2013) FSPM

Real vs. in-silico

Paproki et al. (2012) BMC Plant Biology 12:63

Integrated pipeline

PlantScan – leaf area dynamics and spectral imaging
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http://www.plantphenomics.org.au/services/



Automated mathematical modelling -> derived data
(free form cubic spline (constrained by Ontology))

Paproki et al. 2012 BMC Plant Biology

Sirault et al. In prep

ScanAlea:
•Middleware (MTG)
•Model-assisted segmentation 
(Adel Model – model inversion 
(phenology)

Data assimilation: fusion of a mathematical models 
with observed data
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Root geometry and plant transpiration platforms
(The University of Queensland)

- L-PAD Lysimetry platform
- Automated watering system 

- Estimation of water use per 
unit leaf area

- Root angle
- Moderate-throughput 

seedling screening

- Selection for narrow or 
wide-angle roots

-
sorghum and wheat
e.g. Singh et al 2010, 2012; Manschadi et al 2006
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Variability in space and time
- Feature Extraction in the field

Morning Afternoon



Canopy height
[LiDAR on Phenomobile Lite]

Canopy height from LiDAR validated 
with manual measurements 

Greg Rebetzke, CSIRO
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Validation of LiDAR: biomass

Trait h2

Biomass (field) 0.42

‘Chlorophyll’ 0.64

LiDAR Index 0.88

Approximately 5 seconds per plot

Biomass index (LiDAR)
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Computer

hub

Ocean Optics

receivers

Sonar; Thermal (IR) 

& Ocean Optics

Hyperspectral, LIDAR, RGB, Thermal

2.5 - 4.4m above ground

0.5 – 1.7m 

above ground

In-coming Radiation

1.8m – 3m

wheel span kit

GPS ~2cm

Analog to Digital

Converter
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Phenotyping | Scott Chapman
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Solution: data pipeline



Trait: Radiation Use Efficiency (RUE) is best 
indicator of photosynthetic capacity



Predicting of Biomass & Intercepted radiation

Biomass (R2 = 0.97)

Intercepted Radiation (R2 = 0.80)

Significantly high predictability of 

Biomass & IPAR from sensing 

metrics



Predicting of RUE (Biomass/FPAR)

rmse = 0.06 g/MJ

RUE ~ f( )

• Significantly 

high 

predictability 

using sensing 

technologies in 

predicting RUE

• Next: out scale 

to other 

genotypes and 

environments



GECKO Explorer

3D Canopy

Point hyperspectral

Point Temperature per plot

Temperature Image

Breeding Plots
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phenocopter.csiro.au: Aerial Imaging Platform
Equipment 

specification –
camera lens/speed, 
aircraft flight specs

Mission planning

Flights
Image collation and 

geo-reference

Post-processing to 
generate mosaics 

and 3D

Identification of trial 
images and plots

Extraction of plot 
images, 

straightening and 
trimming

Image spectral 
extraction and 

analysis

Experiment analysis 
of plot-level data

Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

Crop cover

87%

65%

61%

68%

GEHEAT1 - 28 Sep 2012

3-D lodging estimates

Chapman et al. 2014 MDPI Agronomy phenocopter.csiro.au

Canopy Temperature Head counting
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Mosaic processing to
RGB, point cloud, DEM
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Between and within-plot variability in 
Low-yielding wheat trials – 2 to 4 t/ha
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Moderate yielding canola – 3-4 t/ha
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Within-plot variability - ‘Gappiness’
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• Calculate a ‘Gappiness’ index to use as a 
covariate for yield

• Four ‘environment populations’ within plots
• Bordered plants – the ones we want to estimate

• Unbordered plants – usually with higher yield than 
bordered

• Compromised plants – those in proximity to a 
negative soil impact

• Gaps – no plants

• Can we apply a pixel based analysis to compute 
row length of plants in these environments and 
adjust the harvester result?
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Estimating plant height in sorghum
- a reliable self-calibrating method

Challenge

• measure 1200 plots (1 person day by conventional means)

• Ground-referenced point cloud is not precise (left figure)

Solution

• 20 min flight + 20 min ground measurement (measuring the red plots in the field)

• <1h software processing

• Repeatability = as good as ground measurement = ca. 0.74

Hu et al 2018 European J Agronomy
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Indirect traits - Estimating flowering time from 
plant height
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Fred Baret et al



Counting plants – correlation method
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Counting plants – direct object estimation 
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Counting heads in sorghum to estimate tiller number
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- Decision tree approach plus weighting for head size

- Counting accuracy ~ 90%

38 |
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Head counting in sorghum to estimate tiller number

Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

- Decision tree approach plus weighting for head size

- Counting accuracy ~ 90% BUT plot-based accuracy ~ 60%

UQ, CSIRO and U Tokyo 

(submitted)
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• Feature extraction

• Design/spatial trends

• Dynamic modelling

• Modelling Env effects

• Target Trait Prediction

van Eeuwijk et al 2018 Plant 
Science (online)

https://doi.org/10.1016/j.plantsci
.2018.06.018
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Summary of Feature Extraction Needs

• Ground cover - correction of pixel-scaling
• During segmentation, adjusting for dimensions of 

scene elements and pixel size, e.g. leaf width at 
different scales

• Utilise high-density within-plot data
• Estimates of co-variates or yield adjustments 

from within-plot pixel data

• Sub-sampling of areas, counts

• Extraction of traits from distributions

• Longitudinal models to 

– Extract phenotypes as statistical model 
parameters

– Estimate inflections, rates and maxima
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• Feature extraction

• Design/spatial trends

• Dynamic modelling

• Modelling Env effects

• Target Trait Prediction

van Eeuwijk et al 2018 Plant 
Science (online)

https://doi.org/10.1016/j.plantsci
.2018.06.018
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Indirect traits – Fractional light interception
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Fred Baret et al



Indirect traits – estimating RUE
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Integrated crop reaction: Green Area Index

Modelling the GAI time course 
Assumptions:
• Leaf are emitted at regular intervals (phyllochrone) 
• Leaf size depends on leaf order
• Senescence depends on leaf area

6 parameters:
• Plant density
• Total number of leaves
• Area of largest leaf
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• Emergence date
• Phyllochrone
• Senescence
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Robust model Allows to:
• Use the parameters as traits
• Compute metrics derived from the GAI 

time course:
• Slopes (growth, senescence)
• Specific dates
• integrated values
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Integration of UAV and crop simulation models
e.g. using GC/canopy condition + model in order 

to estimate seasonal water use
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Long season

1. UAV - monitor ground cover
2. Calibrate simulation model 

with UAV ground cover
3. Compute seasonal changes in 

biomass and water use 
pattern.

This is VERY hard to measure 
directly
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• Feature extraction

• Design/spatial trends

• Dynamic modelling

• Modelling Env effects

• Target Trait Prediction

van Eeuwijk et al 2018 Plant 
Science (online)

https://doi.org/10.1016/j.plantsci
.2018.06.018
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Genetic trait value

Chapman et al 2002, Hammer et 
al 2006, Chenu et al 2009
Hammer et al 2010, 2015
Cooper et al 2014, 2016, 

Messina et al 2015
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‘Breeding for the future’ 
Chapman et al 2012 CPS

Zheng et al 2012 GCB, 2013 JXB, 
2015 GCB, 2015 JXB

AGRC1024 Sem 2 2017
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APSIM Simulation – Data Analytics

M3.20 Develop and validate 
physically based models to 
predict plant response and 
biomass

Calibrate APSIM sorghum growth model for 
biomass sorghums.

18/02/201
8

75

M3.21

Develop and validate 
physically based models to 
predict plant response and 
biomass

Use scenario analysis tool to identify trait 
combinations that maximize biomass 
productivity in a range to production 
environments and create phenotyping 
analysis workflow for comparisons of 
measured and predicted crop performance.

23/08/201
8

5

M3.23 Predict terminal biomass 
yield of individual lines from 
field data

Evaluate sensor capability to predict biomass 
yield using ground-based and aerial platforms 
using precision and recall metrics.

18/02/201
8 2
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Messina et al (2015) Agron J 107:1978–1986 

• Calibrate APSIM using field observations
– Propose how remote-sensing can do this

• Project trait value effects across corn belt
– Determine mean and variability of performance for 

different traits 



APSIM – entrenched in the 

literature

ISI Web of Knowledge, 30/6/2016



The soil provides a central focus, crops, seasons and managers 
come and go, finding the soil in one state and leaving it in 
another

Features:
 Mechanistic growth of crops, pastures, trees, weeds ... 
 Dynamics of populations (e.g. weed seedbank) 
 Key soil processes (water, solutes, N, P, carbon, pH)
 Surface residue dynamics & erosion
 Rain fed or irrigated systems
 Range of management options 
 Crop rotations + fallowing + mixtures
 Short or long term effects
 Multi-point simulations
 High software engineering standards
 Supports multiple languages
 Links to livestock modules

APSIM - Guiding philosophy



APSIM – Plug-in / Pull-out 
modularity

Toolbox

Climate
Farm

Management

Field 1Livestock

Field 2

Output

Soil
Water

Field
Management

Soil
Nitrogen

Crop BCrop A

Soil
Phosphorus

Surface
Organic
Matter



APSIM modules (Holzworth et al 2014)

APSIM model Origin / references APSIM model Origin / references APSIM model Origin / references

Plants: Mungbean (Robertson et al., 2002) Soil:

AgPasture (Li et al., 2011a) Navybean (Robertson et al., 2002) DCD (Cichota et al., 2010) 

Bambatsi Oats (Peake et al., 2008) Erosion (Freebairn et al., 1989; Littleboy et al., 1992)

Barley (Manschadi et al., 2006) Oil Mallee Nitrogen (SoilN) (Probert et al., 1998a)

Broccoli (Huth et al., 2009) Oil Palm (Huth et al., 2014) Phosphorus (Delve et al., 2009)

Butterfly pea Pasture (Moore et al., 1997) Pond (Gaydon et al., 2012b)

Canola (Robertson et al., 1999) Peanut (Hammer et al., 1995) Solute (Paydar et al., 2005)

Centro (Robertson et al., 2001c) (Poulton et al., 2005)

Chickpea (Robertson et al., 2002) Pigeonpea (Robertson et al., 2001b) Surface (Connolly et al., 2001)

Cotton OZCOT: Potato (Brown et al., 2011a) Surface OM (Probert et al., 1998a)

(Hearn, 1994) Rice ORYZA:

Cowpea (Adiku et al., 1993) (Bouman and van Laar, 2006) SWIM (Huth et al., 2012)

Fababean (Turpin et al., 2003) (Gaydon et al., 2012a) (Connolly et al., 2002)

Field pea (Chen et al., 2008a) Sorghum (Hammer et al., 2009) (Verberg et al., 1996)

(Robertson et al., 2002) (Whish et al., 2005) Temperature (Campbell, 1985)

French bean (Henderson et al., 2011) Soybean (Robertson and Carberry, 1998) Water (SoilWat) (Probert et al., 1998a)

GRASP (Bell et al., 2008) Stylo (Carberry et al., 1996c) (Verberg and Bond, 2003)

(Rickert et al., 2000) Sugarcane (Keating et al., 1999) Water Supply (Gaydon and Lisson, 2005)

Growth Eucalyptus species Sunflower (Chapman et al., 1993) Animal:

(Huth et al., 2002) Sweet corn (Henderson et al., 2011) DDRules

Lablab (Hill et al., 2006) Sweet Sorghum Graz (Owens et al., 2009)

Lucerne (Dolling et al., 2005) Vine Stock (Freer et al., 1997)

(Probert et al., 1998b) Weed Supplement

(Verburg et al., 2007) Wheat (Brown et al., 2014) Climate:

Lupin (Farré et al., 2004) Wheat (Wang et al., 2003) Canopy (Carberry et al., 1996b)

Maize Origin: AUSIM-maize NWheat (Keating et al., 2001) E0 (Meinke et al., 2002)

(Carberry and Abrecht, 1991) I_Wheat (Meinke et al., 1998) MicroClimate (Snow and Huth, 2004)

Millet (van Oosterom et al., 2001) Nwheats (Asseng et al., 1998)

Mucuna (Robertson et al., 2005)
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A shopping list for Statistical Issues in Plant 
Phenotyping
• Experiment type and design

• Indoor/field experiments
• Replication, sampling, statistical modelling

• Measurement protocols and processing
• Sampling over space and time

– Data cleaning/outliers
– Spline fitting
– Self-calibration

• Image processing and analysis
– Image quality and mosaicking
– Segmentation of scenes and objects
– Quantification of reflectance and indices

• Estimation of treatment effects
– Accounting for design and sensor effects
– Incorporation of genotypic data

• Modelling
– Integrating statistical and dynamic models
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