

Challenges and Opportunities for Statistical Applications in High-Throughput Phenomics

Scott Chapman Senior Principal Research Scientist, CSIRO Agriculture and Food Professor in Crop Physiology, The University of Queensland

CSIRO AGRICULTURE AND FOOD www.csiro.au

What do breeders do?

Cycles of selection and evaluation in breeding

Chapman et al 2012 Crop & Pasture Science 63:251-268 Genetic Gain – the breeder's equation

Phenotypic prediction

 $\mathbf{P}_{ij} = \boldsymbol{\mu} + \mathbf{G}_i + \mathbf{E}_j + (\mathbf{GE})_{ij}.$

- Increase intensity (more throughput)
- Increase heritability (more precision)

- A challenge for physiologists !

Over stages of selection: Small population size, reduced selection intensity and reduced σ^2_{G}

Crossing

Glasshouse

Nursery

Stage 1 & 2

Stage 3 & 4

Field nursery is the bottleneck (and limit) – it sets the bar on the upper limit on the mean, potential line extremes/transgressives, and broader genetic variance

Breeders select while trying to maintain genetic variance from which selection (and progress) is made later with replicated plots. Heritability is small and so selection pressure (intensity) is relaxed

Types of traits

- Agronomic
 - Establishment scores
 - Plant stand counts
 - Canopy height
 - Heading/anthesis/flowering timing and patterns
 - Ear counts
 - Disease monitoring
- Physiological/dynamic
 - Leaf and root system characteristics
 - Estimation of derived parameters, e.g. light extinction, radiation use efficiency
 - Water productivity, stress indices
 - Predicting adaptation across environments

Trends in Plant Science

Statistical and dynamic modelling of phenotypes

Outline

- Highlights Abstract Abbreviations Keywords
- 1. Introduction
- 2. A phenotypic trait hierarchy
- 3. Statistical G2P models
- 4. Crop growth models as G2P models
- 5. Challenges ahead
- 6. Concluding remarks
- Acknowledgements
- References

Show full outline 🗸

Plant Science Available online 30 June 2018 In Press, Accepted Manuscript ⑦

Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding

Fred van Eeuwijk ^a, Daniela Bustos-Korts ^a, Emilie J. Millet ^a, Martin Boer ^a, Willem Kruijer ^a, Addie Thompson ^b, Marcos Malosetti ^a, Hiroyoshi Iwata ^c, Roberto Quiroz ^d, Christian Kuppe ^e, Onno Muller ^e, Konstantinos N. Blazakis ^f, Kang Yu ^{g, h}, Francois Tardieu ⁱ, Scott Chapman ^{j, k}

B Show more

https://doi.org/10.1016/j.plantsci.2018.06.018

Get rights and content

Open Access funded by VSNU

van Eeuwijk et al 2018 Plant Science Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding

https://doi.org/10.1016/j.plantsci.2018.06.018

Size input data	Size Modelling Input input step Input		Model / strategy	Output	Model dependence output
	Feature extraction	Multiple pixels/wavelengths for each plot, genotype, time point and environment (low level traits)	Segmentation Organ Tracking Indices (e.g. NDVI) Machine learning	Trait value for each plot, genotype, time point and environment	
	Correcting for design factors and spatial trends	Trait value for each plot, genotype, time point and environment	Mixed models: - AR⊗ AR - SpATS	Adjusted trait value for each genotype, time point and environment	
	Dynamical modelling	Trait value for each genotype, time point and environment	Standard mathematical functions (Logistic, Gompertz) Repeated measures Splines Crop growth models	Genotype specific parameters for each environment (intermediate level traits)	
	Modelling dependence on environmental gradients	Genotype specific parameters for each environment	Standard mathematical functions Splines Crop growth models	Genotypic sensitivities to environmental covariables (higher level traits)	
	Target trait prediction	Higher order traits and environmental characterizations	Mixed models (multi-trait, factorial regression) Crop growth models	Genotype specific yield predictions per environment	

- Feature extraction
- Design/spatial trends
- Dynamic modelling
- Modelling Env effects
- Target Trait Prediction

van Eeuwijk et al 2018 Plant Science (online) <u>https://doi.org/10.1016/j.plantsci</u> .2018.06.018

Size input data	Size Modelling Input step		Model / strategy	Output	Model dependence output
	Feature extraction	Multiple pixels/wavelengths for each plot, genotype, time point and environment (low level traits)	Segmentation Organ Tracking Indices (e.g. NDVI) Machine learning	Trait value for each plot, genotype, time point and environment	
	Correcting for design factors and spatial trends	Trait value for each plot, genotype, time point and environment	Mixed models: - AR⊗ AR - SpATS	Adjusted trait value for each genotype, time point and environment	
	Dynamical modelling	Trait value for each genotype, time point and environment	Standard mathematical functions (Logistic, Gompertz) Repeated measures Splines Crop growth models	Genotype specific parameters for each environment (intermediate level traits)	
	Modelling dependence on environmental gradients	Genotype specific parameters for each environment	Standard mathematical functions Splines Crop growth models	Genotypic sensitivities to environmental covariables (higher level traits)	
	Target trait prediction	Higher order traits and environmental characterizations	Mixed models (multi-trait, factorial regression) Crop growth models	Genotype specific yield predictions per environment	

- Feature extraction
- Design/spatial trends
- Dynamic modelling
- Modelling Env effects
- Target Trait Prediction

van Eeuwijk et al 2018 Plant Science (online) <u>https://doi.org/10.1016/j.plantsci</u> .2018.06.018

What is **APSIM**?

A highly advanced **agricultural systems model** created:

- To model system performance over time
- With an equal emphasis on crop and soil dimensions
- With a capability to deal comprehensively with management matters

An open and transparent 'APSIM Community Source Framework' (modified open source)

Free public good licensing (R&D and education)

Development and maintenance is underpinned by rigorous science and software engineering standards

Owned by *The APSIM Initiative www.apsim.info*

The APSIM Initiative (AI)

- Established in the early 1990's (then as APSRU) to promote the development and use of the science modules and infrastructure software of APSIM
- APSIM development, maintenance and commercialisation are the responsibility of the AI
- Foundation Members of the AI:
 - CSIRO
 - the State of Queensland (Dept of Agric, F & F)
 - the University of Queensland
 - AgResearch (New Zealand)
- Strategic direction guided by the Steering Committee
- Science quality control maintained by the Reference Panel

No equations to see here: Crop models to organise phenotyping across scales...

- Captures tangled web of dynamic interactions & feedbacks
- Understanding can be built up from multiple platforms

Variability in space and time - examples with indoor platforms

PlantScan – leaf area dynamics and spectral imaging

http://www.plantphenomics.org.au/services/

Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

Paproki et al. (2012) BMC Plant Biology 12:63 Sirault *et al.* (2013) FSPM

Data assimilation: fusion of a mathematical models with observed data

Automated mathematical modelling -> derived data (free form cubic spline (constrained by Ontology))

Xavier Sirault, CSIRO

RUE × Iincident

Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

Paproki *et al.* 2012 BMC Plant Biology Sirault *et al. In prep*

Root geometry and plant transpiration platforms (The University of Queensland)

- L-PAD Lysimetry platform
 - Automated watering system
 - Estimation of water use per unit leaf area
- Root angle
 - Moderate-throughput seedling screening
 - Selection for narrow or wide-angle roots

sorghum and wheat e.g. Singh et al 2010, 2012; Manschadi et al 2006

Graeme Hammer, UQ

Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

Variability in platform experiments

Spatial and temporal variability also in inside platform (greenhouse and growth chamber)

Need to be separated from the genetic signal: How to take into account this variability ?

1. Experimental design 2. Correct for spatial trend

Emilie Millet, María Xosé Rodríguez-Álvarez, Martin Boer, Fred van Eeuwijk

Spatial trends over time: two examples

Llorenç Cabrera-Bosquet

Mark Aarts, Roel van Bezouw

Capacity : 1680 plants

Using SpATS at each time point

11

0.02

0.00

-0.03

-0.04

-0.06 -0.08

-0.10

WAGENINGEN

& RESEARCH

Residuals

10 15

Rownum

Histogram

4 0.00 0.02 Genotypic BLUPs

0.60

0.55

0.50

n 45

an

100-

<u>ହ</u>ି ୫୦-

-0.04

-0.01 ਵੈ60

0.00

-0.02 40

-0.03 20

0.04

Estimating the genotypic means (BLUEs or BLUPs)

Using the predict() function, we can calculate the genotypic mean per time point and use the new time courses

We can also remove the spatial trends and keep the information at the plant level

Emilie Millet, María Xosé Rodríguez-Álvarez, Martin Boer, Fred van Eeuwijk

Variability in space and time - Feature Extraction in the field

Canopy height [LiDAR on Phenomobile Lite]

Greg Rebetzke, CSIRO

Validation of LiDAR: biomass

900

0

Trait	h²		
Biomass (field)	0.42		
'Chlorophyll'	0.64		
LiDAR Index	0.88		

Approximately 5 seconds pe

Greg Rebetzke, CSIRO

Solution: data pipeline

Queensland Alliance for Agriculture & Food Innovation

Trait: Radiation Use Efficiency (RUE) is best indicator of photosynthetic capacity

Queensland Alliance for Agriculture & Food Innovation

Predicting of Biomass & Intercepted radiation

Predicting of RUE (Biomass/FPAR)

- Significantly high predictability using sensing technologies in predicting RUE
- Next: out scale to other genotypes and environments

Queensland Alliance for Agriculture & Food Innovation

GECKO Explorer

Queensland Alliance for Agriculture & Food Innovation

27

phenocopter.csiro.au: Aerial Imaging Platform

Crop cover

1000 87% 0.6 2 0.5 65% 0.4 ŝ Thu 1 0.2 61% 0.2 GEHEAT1 - 28 Sep 2012 68%

CSIRC

Chapman et al. 2014 MDPI Agronomy phenocopter.csiro.au

28 | Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

Moderate yielding canola – 3-4 t/ha

Within-plot variability - 'Gappiness'

- Calculate a 'Gappiness' index to use as a covariate for yield
- Four 'environment populations' within plots
 - Bordered plants the ones we want to estimate
 - Unbordered plants usually with higher yield than bordered
 - Compromised plants those in proximity to a negative soil impact
 - Gaps no plants
- Can we apply a pixel based analysis to compute row length of plants in these environments and adjust the harvester result?

Within-plot variability - 'Gappiness'

- Calculate a 'Gappiness' index to use as a covariate for yield
- Four 'environment populations' within plots
 - Bordered plants the ones we want to estimate
 - Unbordered plants usually with higher yield than bordered
 - Compromised plants those in proximity to a negative soil impact
 - Gaps no plants
- Can we apply a pixel based analysis to compute row length of plants in these environments and adjust the harvester result?

Estimating plant height in sorghum - a reliable self-calibrating method

Challenge

- measure 1200 plots (1 person day by conventional means)
- Ground-referenced point cloud is not precise (left figure)

Solution

- 20 min flight + 20 min ground measurement (measuring the red plots in the field)
- <1h software processing
- Repeatability = as good as ground measurement = ca. 0.74

Hu et al 2018 European J Agronomy

Indirect traits - Estimating flowering time from plant height

Counting plants – correlation method

Counting plants – direct object estimation

Counting heads in sorghum to estimate tiller number

- Decision tree approach plus weighting for head size
- Counting accuracy ~ 90%

CSIR

Head counting in sorghum to estimate tiller number

- Decision tree approach plus weighting for head size
- Counting accuracy ~ 90% **BUT plot-based accuracy ~ 60%**

Size input data		Modelling step	Input	Model / strategy	Output	Model dependence output
	(Feature extraction	Multiple pixels/wavelengths for each plot, genotype, time point and environment (low level traits)	Segmentation Organ Tracking Indices (e.g. NDVI) Machine learning	Trait value for each plot, genotype, time point and environment	
		Correcting for design factors and spatial trends	Trait value for each plot, genotype, time point and environment	Mixed models: - AR⊗ AR - SpATS	Adjusted trait value for each genotype, time point and environment	
		Dynamical modelling	Trait value for each genotype, time point and environment	Standard mathematical functions (Logistic, Gompertz) Repeated measures Splines Crop growth models	Genotype specific parameters for each environment (intermediate level traits)	
		Modelling dependence on environmental gradients	Genotype specific parameters for each environment	Standard mathematical functions Splines Crop growth models	Genotypic sensitivities to environmental covariables (higher level traits)	
		Target trait prediction	Higher order traits and environmental characterizations	Mixed models (multi-trait, factorial regression) Crop growth models	Genotype specific yield predictions per environment	

- Feature extraction
- Design/spatial trends
- Dynamic modelling
- Modelling Env effects
- Target Trait Prediction

van Eeuwijk et al 2018 Plant Science (online) <u>https://doi.org/10.1016/j.plantsci</u> .2018.06.018

Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman 41 |

Longitudinal models to

- from within-plot pixel data

different scales

- Sub-sampling of areas, counts
- Extraction of traits from distributions

Utilise high-density within-plot data

Estimates of co-variates or yield adjustments

- During segmentation, adjusting for dimensions of scene elements and pixel size, e.g. leaf width at
- Ground cover correction of pixel-scaling

Summary of Feature Extraction Needs

Size input data		Modelling step	Input	Model / strategy	Output	Model dependence output
		Feature extraction	Multiple pixels/wavelengths for each plot, genotype, time point and environment (low level traits)	Segmentation Organ Tracking Indices (e.g. NDVI) Machine learning	Trait value for each plot, genotype, time point and environment	
		Correcting for design factors and spatial trends	Trait value for each plot, genotype, time point and environment	Mixed models: - AR⊗ AR - SpATS	Adjusted trait value for each genotype, time point and environment	
	(Dynamical modelling	Trait value for each genotype, time point and environment	Standard mathematical functions (Logistic, Gompertz) Repeated measures Splines Crop growth models	Genotype specific parameters for each environment (intermediate level traits)	
		Modelling dependence on environmental gradients	Genotype specific parameters for each environment	Standard mathematical functions Splines Crop growth models	Genotypic sensitivities to environmental covariables (higher level traits)	
		Target trait prediction	Higher order traits and environmental characterizations	Mixed models (multi-trait, factorial regression) Crop growth models	Genotype specific yield predictions per environment	

- Feature extraction
- Design/spatial trends
- Dynamic modelling
- Modelling Env effects
- Target Trait Prediction

van Eeuwijk et al 2018 Plant Science (online) <u>https://doi.org/10.1016/j.plantsci</u> .2018.06.018

Indirect traits – Fractional light interception

- Measurement of FIPAR over a set of microplots
 From DHP measurements
- Calibration of a regression for each flight:

 $FIPAR = \alpha_0 \sum_{i=1}^{6} \alpha_i \cdot R_i / R_{ref}$

Indirect traits – estimating RUE

CSIRC

44 | Challenges and Opportunities for Statistical Applications in Plant Phenotyping | Scott Chapman

Integrated crop reaction: Green Area Index

Modelling the GAI time course

Assumptions:

• Leaf are emitted at regular intervals (phyllochrone)

٠

- Leaf size depends on leaf order
- Senescence depends on leaf area

6 parameters:

- Plant density
- Total number of leaves
- Area of largest leaf

Emergence date

Phyllochrone

Senescence

- **Robust model Allows to:**
- Use the parameters as traits
- Compute metrics derived from the GAI time course:
 - Slopes (growth, senescence)
 - Specific dates
 - integrated values

Integration of UAV and crop simulation models e.g. using GC/canopy condition + model in order to estimate seasonal water use

- 1. UAV monitor ground cover
- 2. Calibrate simulation model with UAV ground cover
- Compute seasonal changes in biomass and water use pattern.

This is VERY hard to measure directly

Size input data	Modelling step	Input	Model / strategy	Output	Model dependence output
	Feature extraction	Multiple pixels/wavelengths for each plot, genotype, time point and environment (low level traits)	Segmentation Organ Tracking Indices (e.g. NDVI) Machine learning	Trait value for each plot, genotype, time point and environment	
	Correcting for design factors and spatial trends	Trait value for each plot, genotype, time point and environment	Mixed models: - AR⊗ AR - SpATS	Adjusted trait value for each genotype, time point and environment	
	Dynamical modelling	Trait value for each genotype, time point and environment	Standard mathematical functions (Logistic, Gompertz) Repeated measures Splines Crop growth models	Genotype specific parameters for each environment (intermediate level traits)	
	Modelling dependence on environmental gradients	Genotype specific parameters for each environment	Standard mathematical functions Splines Crop growth models	Genotypic sensitivities to environmental covariables (higher level traits)	
	Target trait prediction	Higher order traits and environmental characterizations	Mixed models (multi-trait, factorial regression) Crop growth models	Genotype specific yield predictions per environment	

- Feature extraction
- Design/spatial trends
- Dynamic modelling
- Modelling Env effects
- Target Trait Prediction

van Eeuwijk et al 2018 Plant Science (online) <u>https://doi.org/10.1016/j.plantsci</u> .2018.06.018

APSIM Simulation – Data Analytics

M3.20	Develop and validate physically based models to predict plant response and biomass	Calibrate APSIM sorghum growth model for biomass sorghums.	18/02/201 8	75
M3.21	Develop and validate physically based models to predict plant response and biomass	Use scenario analysis tool to identify trait combinations that maximize biomass productivity in a range to production environments and create phenotyping analysis workflow for comparisons of measured and predicted crop performance.	23/08/201 8	5
M3.23	Predict terminal biomass yield of individual lines from field data	Evaluate sensor capability to predict biomass yield using ground-based and aerial platforms using precision and recall metrics.	18/02/201 8	2

- Calibrate APSIM using field observations
 - Propose how remote-sensing can do this
- Project trait value effects across corn belt
 - Determine mean and variability of performance for different traits

Messina et al (2015) Agron J 107:1978-1986

APSIM – entrenched in the literature

Results found: 744

- Sum of the Times Cited [?]: 10778
- Sum of Times Cited without self-citations [?]: 7291
 - Citing Articles [?]: 5402
 - Citing Articles without self-citations [?]: 4837
 - Average Citations per Item [?]: 14.49

h-index [?]: 48

ISI Web of Knowledge, 30/6/2016

The soil provides a central focus, crops, seasons and managers come and go, finding the soil in one state and leaving it in another

Features:

- ✓ Mechanistic growth of crops, pastures, trees, weeds ...
- ✓ Dynamics of populations (e.g. weed seedbank)
- ✓ Key soil processes (water, solutes, N, P, carbon, pH)
- ✓ Surface residue dynamics & erosion
- ✓ Rain fed or irrigated systems
- ✓ Range of management options
- ✓ Crop rotations + fallowing + mixtures
- ✓ Short or long term effects
- ✓ Multi-point simulations
- ✓ High software engineering standards
- ✓ Supports multiple languages
- ✓ Links to livestock modules

APSIM – Plug-in / Pull-out modularity

APSIM modules (Holzworth et al 2014)

APSIM model	Origin / references	APSIM model	Origin / references	APSIM model	Origin / references
Plants:		Mungbean	(Robertson et al., 2002)	Soil:	
AgPasture	(Li et al., 2011a)	Navybean	(Robertson et al., 2002)	DCD	(Cichota et al., 2010)
Bambatsi		Oats	(Peake et al., 2008)	Erosion	(Freebairn et al., 1989; Littleboy et al., 1992)
Barley	(Manschadi et al., 2006)	Oil Mallee		Nitrogen (SoilN)	(Probert et al., 1998a)
Broccoli	(Huth et al., 2009)	Oil Palm	(Huth et al., 2014)	Phosphorus	(Delve et al., 2009)
Butterfly pea		Pasture	(Moore et al., 1997)	Pond	(Gaydon et al., 2012b)
Canola	(Robertson et al., 1999)	Peanut	(Hammer et al., 1995)	Solute	(Paydar et al., 2005)
Centro			(Robertson et al., 2001c)		(Poulton et al., 2005)
Chickpea	(Robertson et al., 2002)	Pigeonpea	(Robertson et al., 2001b)	Surface	(Connolly et al., 2001)
Cotton	OZCOT:	Potato	(Brown et al., 2011a)	Surface OM	(Probert et al., 1998a)
	(Hearn, 1994)	Rice	ORYZA:		
Cowpea	(Adiku et al., 1993)		(Bouman and van Laar, 2006)	SWIM	(Huth et al., 2012)
Fababean	(Turpin et al., 2003)		(Gaydon et al., 2012a)		(Connolly et al., 2002)
Field pea	(Chen et al., 2008a)	Sorghum	(Hammer et al., 2009)		(Verberg et al., 1996)
	(Robertson et al., 2002)		(Whish et al., 2005)	Temperature	(Campbell, 1985)
French bean	(Henderson et al., 2011)	Soybean	(Robertson and Carberry, 1998)	Water (SoilWat)	(Probert et al., 1998a)
GRASP	(Bell et al., 2008)	Stylo	(Carberry et al., 1996c)		(Verberg and Bond, 2003)
	(Rickert et al., 2000)	Sugarcane	(Keating et al., 1999)	Water Supply	(Gaydon and Lisson, 2005)
Growth	Eucalyptus species	Sunflower	(Chapman et al., 1993)	Animal:	
	(Huth et al., 2002)	Sweet corn	(Henderson et al., 2011)	DDRules	
Lablab	(Hill et al., 2006)	Sweet Sorghum		Graz	(Owens et al., 2009)
Lucerne	(Dolling et al., 2005)	Vine		Stock	(Freer et al., 1997)
	(Probert et al., 1998b)	Weed		Supplement	
	(Verburg et al., 2007)	Wheat	(Brown et al., 2014)	Climate:	
Lupin	(Farré et al., 2004)		Wheat (Wang et al., 2003)	Canopy	(Carberry et al., 1996b)
Maize	Origin: AUSIM-maize		NWheat (Keating et al., 2001)	E0	(Meinke et al., 2002)
	(Carberry and Abrecht, 1991)		I_Wheat (Meinke et al., 1998)	MicroClimate	(Snow and Huth, 2004)
Millet	(van Oosterom et al., 2001)		Nwheats (Asseng et al., 1998)		
Mucuna	(Robertson et al., 2005)				

Challenges and Opportunities for Statistical Applications in High-Throughput Phenomics

CSIRO Scott Chapman/UQ, Bangyou Zheng, Greg Rebetzke, David Deery, Xavier Sirault UQ David Jordan, Graeme Hammer, Andries Potgieter, Barbara George-Jaeggli WUR/BCAM/INRA Emilie Millet, Daniela Bustos-Korts, María Xosé Rodríguez-Álvarez, Martin Boer, Fred van Eeuwijk, Fred Baret, Shouyang, Simon Madec, Alexis Comar

CSIRO AGRICULTURE FLAGSHIP www.csiro.au

A shopping list for Statistical Issues in Plant Phenotyping

- Experiment type and design
 - Indoor/field experiments
 - Replication, sampling, statistical modelling
- Measurement protocols and processing
 - Sampling over space and time
 - Data cleaning/outliers
 - Spline fitting
 - Self-calibration
 - Image processing and analysis
 - Image quality and mosaicking
 - Segmentation of scenes and objects
 - Quantification of reflectance and indices
- Estimation of treatment effects
 - Accounting for design and sensor effects
 - Incorporation of genotypic data
- Modelling
 - Integrating statistical and dynamic models

