UAV (and other) Phenotyping in an Arid Environment

Rick Ward, University of Arizona

The 4th Annual - Nordic Plant Phenotyping Network Workshop Rungstedgaard - Rungsted, Denmark - November 22nd – 23rd, 2018

http://phenome2019.org/

$\mathbf{DNE} 2019$ UCSON, AZ FEBRUARY 6-10 TUCSON, AZ HILTON EL CONQUISTADOR RESORT

contributors

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

TERRA-REF: ADVANCED FIELD CROP ANALYTICS

• M Tuller's lab

Maricopa, Arizona

Phoenix Climate Graph - Arizona Climate Chart

Annual high temperature:	30.3°C
Annual low temperature:	17.4°C
Average temperature:	23.85°C
Average annual precipitation - rainfall:	204 mm
Days per year with precipitation - rainfall:	36 days
Annual hours of sunshine:	3832 hours
Av. annual snowfall:	-

Photo credits: M Newcomb

Thoughts.....

- UAV data are <u>Remote Sensing</u> data
 - The discipline of Remote Sensing is rich with parallels
- QGIS and ArcGIS enable:
 - Polygons (one per plot) to be easily generated at start of season, stored in a single set of "shape" files (*.shp files)
 - A shape file includes a spreadsheet-like 'attribute table' with one row per polygon = one row per plot
 - GIS software enables near-instant generation of *plot level means*, stdevs, etc.
 - New *data* become new columns=traits in the attribute table
 - Field Book-like plot attributes- field address, genotype, experiment, row, column, rep, etc. are all in the attribute table
 - Copy/paste, or export/import into your statistical software and get your predictions.
 - These become data you can react to within hours and days of acquisition.
 - Time series translate into rates readily.

Thoughts.....2

- Establish georeferenced Ground Control Points (GCPs), with X,Y, and Z values at season's start.
- Use your GCPs to ensure your orthomosaics are "georectified", i.e. perfectly placed on the earth
 - Scott Chapman can provide work flows
- Go with both RGB (for visual guide for georectification and overall inspection), <u>and Multi-spec</u>
 - Work to show RGB is sufficient is relevant to LDC country situations

ORIGINAL RESEARCH ARTICLE Front. Plant Sci., 26 June 2018 | https://doi.org/10.3389/fpls.2018.00893

Download Article

Comparative Aerial and Ground Based High Throughput Phenotyping for the Genetic Dissection of NDVI as a Proxy for Drought Adaptive Traits in Durum Wheat

🛐 Giuseppe E. Condorelli ¹ , 🌇 Marco Maccaferri ^{1*} , 📃	Maria Newcomb², 💄	Pedro Andrade-Sanchez ² , 🔝	Jeffrey W. White ³ , 🌉
Andrew N. French ³ , 🎆 Giuseppe Sciara ¹ , 🌆 Rick Ward	🛿 and 🧝 Roberto Tub	erosa ¹	

¹Department of Agricultural Sciences, University of Bologna, Bologna, Italy
²Maricopa Agricultural Center, University of Arizona, Tucson, AZ, United States
³US Arid Land Agricultural Research Center, USDA-ARS, Maricopa, AZ, United States

High-throughput phenotyping platforms (HTPPs) provide novel opportunities to more effectively dissect the genetic basis of drought-adaptive traits. This genome-wide association study (GWAS) compares the results obtained with two Unmanned Aerial Vehicles (UAVs) and a ground-based platform used to measure Normalized Difference Vegetation Index (NDVI) in a panel of 248 elite durum wheat (*Triticum turgidum* L. ssp. *durum* Desf.) accessions at different growth stages and water regimes. Our results suggest increased ability of aerial over ground-based platforms to detect quantitative trait loci (QTL) for NDVI, particularly under terminal drought stress, with 22 and 16 single QTLs detected, respectively, and accounting for 89.6 vs. 64.7% phenotypic variance based on multiple QTL models. Additionally, the durum panel was investigated for leaf chlorophyll content (SPAD), leaf rolling and dry biomass under terminal drought stress, 2 on leaf rolling and 10 on biomass. Among 9 QTL hotspots on chromosomes 1A, 1B, 2B, 4B, 5B, 6B, and 7B that influenced NDVI and other drought-adaptive traits, 8 showed *per se* effects unrelated to phenology.

"

Export citation

Suggest a Research Topic

SHARE ON

SanDisk Mobile Ultra

64GB MSS

For 0.4 ha with 5 band camera, ~ 1800 images (3GB)

Post flight processing

Geo-rectified Orthomosaic: Whether from RBG, multi-spectral, or thermal, each of the orthomoasic's pixels each contain 1 or more channels (layers) of data

rayCloud with one GCP selected and cameras visible

2 0 Navigation Clipping PIX4D Project Process View Point Cloud Editing Properties đΧ \bigcirc Selection Home Rainbird-E2 (3D GCP) Label: Rainbird-E2 Map View 12 Type: 3D GCP rayCloud X [m]: 409015.098 Y [m]: 3659997.783 Volumes Z [m]: 353.131 РЪ Horizontal Accuracy [m]: 0.020 Mosaic Vertical Accuracy [m]: 0.020 Editor Number of Marked Images: 11 +≡ ×÷ S₀² [pixel]: 0.6096 Index Calculator Theoretical Error S(X,Y,Z) [m]: 0.003, 0.002, 0.007 Maximal Orthogonal Ray Distance D(X,Y,Z) [m]: 0.010, -0.013, -0.001 Error to GCP Initial Position [m]: 0.003, 0.018, 0.006 Initial Position [m]: 409015.098, 3659997.783, 353.131 Computed Position [m]: 409015.096, 3659997.765, 353.125 Automatic Marking Apply Cancel Help Images Image Size Zoom Level Ð $\oplus \odot$ Δ 11 0806 IPG GCP: Rainbird-E2 JI 0807.JPG GCP: Rainbird-E JI 0805.JPG GCP: Rainbird-E2 DJI 0808.JPG GCP: Rainbird-E L, Processing மி Log Output **O** Processing Options

– 🗆 🗙

GCPs: Visible in images; RTK precision located

GCPs

Ortho as raster layer in QGIS with overlay of one polygon per plot (in a shape file)

Post flight processing

GIS Zonal statistics (stats by polygon=plot)

Above with aggregate information across layers for a single plot

heatF13B2_20	017_2018_2rowplots_rotaten5225_3660095_shift0017e								
 Short_name 		Astrodur							
> (Derive	d)								
> (Actions	s)								
Id		614							
range		39							
column		6							
replicat	e	2=North							
Plot_ty	pe	Exp							
site		MAC Field Scanner Season 5 Range 39 Column 6							
cultivar		UNIBO Durum Panel DP_207							
Durum_	pane	DP_207							
Short_r	name	Astrodur							
Origin		AUSTRALIA							
Entry_r	hame	Astrodur							
Design	Row	30							
Design	Col	5							
_									
	Attribute table (livir	ng field book-							
	imagine it pivoted 90 degrees);								
	one row per plot								

Value

Repeatability

Entry variation

Histogram of residuals

Detects entry variation Data properties are as expected for Normal residual distributions

Generalized heritability

Term Durum_pane Heritability 0.6553

Genetic Experimental work flow

Co-located qtl: σ_{g}^{2}

2 seasons of wheat IRT data point to same 3 QTL?

8,00 7.50 7,00 6,50 8,00

2018

R

2 seasons of wheat IRT data point to same 3 QTL?

Recent tests at Maricopa in cooperation with St Louis University with ICI, FLIR and Thermomap gave promising results showing moderately high general h² (>.6)

Early evidence of Canopy temperature qtl for Sorghum Bioenergy Associate Panel (BAP) using Ebee/Thermomap

Segregation for greenness in a well characterized population of 210 rice Recombinant Inbred Lines

Segregation for greenness in a well characterized rice RIL

Orthomosaic of GLI in a population of 220 rice RILS in 2 replications

Range 1		2	3 4	5	6	7	8	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	i Rang
lumn 1]																									
2																										
3																										
4																										
5																										
6																										
7																										
lumn 8																										
lumn 9																										
10																										
11																										
12																										
13																										
14																										
15																										
lumn 16																										
Range 1		2	3 4	5	6	7	\$	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	i Ran
	-	_																						_		
	1	RanCol	exp	year	trt	Duk	ce_plot	rep		Des_row	Des_co	l e	ntry	type	F_rang	e F_co	olumn or	d_NS	ord_S	dir	GLIIN	/laskme				
	2	01_01	rice_ril	20	18 WW		1001		1		1	1 R	177	RIL		1	1	1		1 LR	0.	12185837	73			
	3	01_02	rice_ril	20	18 WW		1028		1		2	1 R	169	RIL		1	2	2		2 LR	(0.1369194	17			
	4	01_03	rice_ril	20	18 WW		1055		1		3	1 R	218	RIL		1	3	3		3 LR	0.	09245987	75			
	5	01_04	rice_ril	20	18 WW		1082		1		4	1 R	023	RIL		1	4	4		4 LR	0.	11766372	27			
	6	01_05	rice_ril	20	18 WW		1109		1		5	1 R	045	RIL		1	5	5		5 LR	0.	15323962	22			
	7	01_06	rice_ril	20	18 WW		1136		1		6	1 R	184	RIL		1	6	6		6 LR	0.	08918754	16			
	8	01_07	rice_ril	20	18 WW		1163		1		7	1 R	187	RIL		1	7	7		7 LR	0.	05618682	25			
	9	01_08	rice_ril	20	18 WW		1190		1		8	1 R	002	RIL		1	8	8		8 LR	0.	07618503	35			
	10	01_09	rice_ril	20	18 WW		2001		2		9	1 R	062	RIL		1	9	217	22	4 LR		0.0595157	74			
	11	01_10	rice_ril	20	18 WW		2028		2	1	.0	1 R	195	RIL		1	10	218	22	3 LR	0.	10575272	28			
	12	01_11	rice_ril	20	18 WW		2055		2	1	.1	1 R	068	RIL		1	11	219	22	2 LR	0.	17853973	37			
	13	01_12	rice_ril	20	18 WW		2082		2	1	.2	1 R	210	RIL		1	12	220	22	1 LR	0.	13364806	57			_
		0.4 4 3	rice ril	20	18 WW		2109		2	1	.3	1 R	235	RIL		1	13	221	22	O LR	0.	12781026	51		QG	IS.
	14	01_13	_				2126		2	1	4	1 R	007	RIL		1	14	222	21	9 LR	0.	10734067	4		30	.0
	14 15	01_13	rice_ril	20	18 WW		2130		2	-	_							222	21							
	14 15 16	01_13 01_14 01_15	rice_ril rice_ril	20	18 WW 18 WW		2156		2	1	.5	1 R	197	RIL		1	15	225	21	B LR	0.	09884894	13			
	14 15 16 17	01_13 01_14 01_15 01_16	rice_ril rice_ril rice_ril	20 20 20	18 WW 18 WW 18 WW		2136 2163 2190		2	1	.5 .6	1 R 1 R	197 150	RIL		1	15	223	21	8 LR 7 LR	0.	.09884894 .06212722	13			
	14 15 16 17 18	01_13 01_14 01_15 01_16 02_01	rice_ril rice_ril rice_ril rice_ril	20 20 20 20	18 WW 18 WW 18 WW 18 WW		2136 2163 2190 1002		2 2 2 1	1	.5 .6 1	1 R 1 R 2 R	197 150 006	RIL RIL RIL		1 1 2	15	223	21	8 LR 7 LR 6 RL	0. 0. 0.	09884894 06212722 13155506	13 26 55			
	14 15 16 17 18 19	01_13 01_14 01_15 01_16 02_01 02_02	rice_ril rice_ril rice_ril rice_ril rice_ril	20 20 20 20 20 20	18 WW 18 WW 18 WW 18 WW 18 WW		2136 2163 2190 1002 1029		2 2 1 1	1	5 6 1 2	1 R 1 R 2 R 2 R	197 150 006 120	RIL RIL RIL RIL		1 1 2 2	15 16 1 2	223 224 9 10	21	8 LR 7 LR 6 RL 5 RL	0. 0. 0.	09884894 06212722 13155506 11500099	13 26 55 95			

Sequenced parents of rice hybrid parent genomes

0

Fig. S1. Some features of ZS97, MH63 and their hybrid SY63.

Extensive sequence divergence between the reference genomes of two elite *indica* rice varieties Zhenshan 97 and Minghui 63

Jianwei Zhang (张建伟)^{a,b,c,1}, Ling-Ling Chen (陈玲玲)^{a,1}, Feng Xing (邢锋)^{a,1}, David A. Kudrna^{b,c}, Wen Yao (姚文)^a, Dario Copetti^{b,c,d}, Ting Mu (穆婷)^a, Weiming Li (李伟明)^a, Jia-Ming Song (宋佳明)^a, Weibo Xie (谢为博)^a, Seunghee Lee^{b,c}, Jayson Talag^{b,c}, Lin Shao (邵林)^a, Yue An (安玥)^a, Chun-Liu Zhang (张春柳)^a, Yidan Ouyang (欧阳赤聃)^a, Shuai Sun (孙帅)^a, Wen-Biao Jiao (焦文标)^a, Fang Lv (吕芳)^a, Bogu Du (杜博贾)^a, Meizhong Luo (罗美中)^a, Carlos Ernesto Maldonado^{b,c}, Jose Luis Goicoechea^{b,c}, Lizhong Xiong (熊立仲)^a, Changyin Wu (吴昌银)^a, Yongzhong Xing (邢永忠)^a, Dao-Xiu Zhou (周道绣)^a, Sibin Yu (余四斌)^a, Yu Zhao (赵敏)^a, Gongwei Wang (王功伟)^a, Yeisoo Yu^{b,c,2}, Yijie Luo (罗芝洁)^a, Zhi-Wei Zhou (周智伟)^a, Beatriz Elena Padilla Hurtado^{b,c}, Ann Danowitz^b, Rod A. Wing^{b,c,d,3}, and Qifa Zhang (张启发)^{a,3}

^aNational Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; ^bArizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721; ^cBIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721; and ^dInternational Rice Research Institute, Genetic Resource Center, Los Baños, Laguna, Philippines

GLliMaskme

Entry variance is positive

Heritability: 0.7475

LSD @ 0.01 alpha =0.015;

Fixed term	Wald statistic	F pr			
entry	2567.92	<0.001			

Field Scanalyzer (click picture to see the movie)

.. .. .

Phenotyping sensors

- 2x 9MP RGB Camera
- FLIR thermal camera
- PSII camera (Kautsky effect)
- Laser scanners special development by Fraunhofer IIS
 - 0.6 m Scan width
 - 1.5 m Scan depth (adjustable)
 - 0.25 mm point to point distance
 - 2x side view with different setup
- Hyperspectral cameras
- Active Reflectance Sensor (Crop Circle)
- NDVI Sensor
- Color Sensor

PSII fluorescence system

LemnaTec System: Type: LED Color: red Intensity: 0-7000 µmol m-2 s-1 at 70 cm Resolution: 1936*1216 Frame Rate: 100 images/s Range: 690-730nm Imaging area: 2000x1500mm

1000 nm

NIR

the fluorescence camera in the gantry camera box as it is set up now requires dark adaptation; the red flash duration is one second in total; F0 is measured 20 ms after the red flash first starts, and Fm is expected after 0.8-0.9 s. We've been running the instrument at 70% saturation, which is adjustable in the script

During two sorghum field trials in 2018, experiments were conducted comparing measurements on plots treated with photosystem II inhibitor herbicide (Velpar) and untreated plots. Quantum efficiency of the PSII system was estimated as Fv/Fm (normalized ratio of variable fluorescence to max fluorescence).

Untreated control

Treated with PSII inhibitor

October 2018 experiment, two sorghum varieties

Photo credits: M Newcomb

PSII- σ^2_{σ}

Automated Chlorophyll Fluorescence Imaging of Dark-adapted Plants in Field Plots

Maria Newcomb¹, Tino Dornbusch², Matthew Herritt³, Jeffrey Demieville¹, Jeffrey W. White³, Rick Ward¹, John Heun¹, Robert J. Strand², Duke Pauli¹, Nadia Shakoor⁴, Todd Mockler⁴

> ¹University of Arizona, Maricopa Agricultural Center, Maricopa, AZ; ²LemnaTec, Aachen Germany and N America; ³USDA-ARS Arid-Land Agricultural Research Center, Maricopa, AZ; ⁴Donald Danforth Plant Science Center, St. Louis, MO

Fv/Fm for 160 RILs (Tx7000 x SC56) + 8 Checks x 2 Reps x 2 nights

RILS provided by W Rooney (Texas A&M)

mean	standard	coefficient					
Fv/Fm	error	of variation	df				
0.779	0.0046	0.6	328				

	sum of squares	df	mean square	variance ratio	F pr.
Genotype	0.0138	159	0.00009	4.17	<0.001
Date	0.0296	1	0.02965	1422.46	<0.001
Genotype x date	0.0016	159	0.00001	0.49	n.s.
Residual	0.0068	328	0.00002		
Total	0.0519	647			

Leaf rolling under drought: durum wheat: Fraunhoferdeveloped Laser Scanners

Photo credits: M Newcomb

Leaf rolling: potential for quantification from sensor-derived data products – 3D laser point clouds

TERRAREF data to be public and will/does include:

- Resequencing of over 300 of the BAP accessions
 - 9 million snps
- GBS data for the sorghum RIL
- UAV orthomosaics (thermal and multispectral) for wheat and sorghum crops (3 of wheat, 5 of sorghum)
- Gantry data for all instruments
- The Gantry data are 'reference' data, meant to enable optimal design of smaller systems such as those that would fit on a drone

Thanks!

Rick Ward rickw@email.arizona.edu