Quantification of intra-plot variation

NPPN workshop, 2018

Signe M. Jensen PLEN, SCIENCE smj@plen.ku.dk

UNIVERSITY OF COPENHAGEN

A nice walk in the experimental field...

... and then again

Why quantify the variation?

- Warning indicator
 - Too high variation in a plot may be problematic and due to "outer" circumstances (pests etc.)
- Adjustment factor
 - Or simply to explain an observed low value/rating
- Of direct interest
 - Variation in germination
 - Detect phenotypic qualities
 - Lodging
 - Winter hardiness

What do we want to quantify?

- Spatial variation
- Variation in what?
 - Variation in coverage
 - Variation in plant size
 - Variation in color
 - Variation in plant density
- The observed data determine what kind of variation may be measured
- Different approaches for different crops

How to quantify intra-plot variation

- Definition: Direct or indirect
- Tools for quantifying variation
 - Coefficient of variation of plant specific characteristic
 - Coverage
 - Color
 - Measure of deviation from homogeneity defined as randomness
 - Variograms
 - (Open) Spaces between plants

Germination of potatoes

- Experiment at Danespo Potato Breeding
- 623 plots
- UAV flight campaign 8th of June 2017
- Using binary images

Comparing coverage of subsets of the plots

Comparing rows

Comparing plants

CV for row coverage - Results

Low variation

High variation

How to quantify intra-plot variation

- Definition: Direct or indirect
- Tools for quantifying variation
 - Coefficient of variation of plant specific characteristic
 - Coverage
 - Color
 - Measure of deviation from homogeneity
 - Variograms
 - (Open) Spaces between plants

Germination/winter hardiness of winter barley

- Experiment at Sejet Plant Breeding
- 160 plots
- UAV fligt campaign 6th of April 2018
- Using ExG index images

Indirect definition of variation – Deviation from spatial homogeneity

Deviation from spatial homogeneity - Results

Low variation

High variation

How to quantify intra-plot variation

- Definition: Direct or indirect
- Tools for quantifying variation
 - Coefficient of variation of plant specific characteristic
 - Coverage
 - Color
 - Measure of deviation from homogeneity
 - Variograms
 - (Open) Spaces between plants

Variograms

Range: Distance to reach 90% of the level of the plateau

Using variograms - Results

Low variation

High variation

How to quantify intra-plot variation

- Definition: Direct or indirect
- Tools for quantifying variation
 - Coefficient of variation of plant specific characteristic
 - Coverage
 - Color
 - Measure of deviation from homogeneity
 - Variograms
 - (Open) Spaces between plants

Germination of faba beans

- Experiment at Sejet Plant Breeding
- 60 images (app. 1 m²)
- UAV flight campaign 9th of May 2017

Open spaces

Delaunay Triangulation

Open spaces - Results

Low variation

High variation

Conclusions

- Known methods from geostatistics looks promising for quantifying intra-plot variation
- One method doesn't fit them all
- Resolution of the images may impact the results

Challenges and perspectives

- To avoid influence of the size of the plants
 - Larger/more developed plants may overlap
- To avoid influence of the colors
 - Different colors of the soil
 - Different colors of the cultivars
- Weed
 - Timing of the flight campaign my be important
- Could be relevant for other purposes
 - Drought
 - Lodging
 - Maturing

Source of variation: G×E×M

- Environment
 - Soil type and quality
 - Small and large pests
 - Plant disease
 - ...
- Management
 - Soil tillage
 - Fertilization
 - ...
- Genetics
 - Robustness
 - Homogeneity within each genotype
 - Winter hardiness
 - ...

Literature

- Araus JL & Kefauver SC (2018). Breeding to adapt agriculture to climate change: affordable phenotyping solutions. *Current Opinion in Plant Biology.* 13: 1-11
- García Torres L, Peña-Barragán Jm, López-Granados F. Jurado-Expósito M & Fernández-Escobar R (2008). Automatic assessment of agroenvironmental indicators from remotely sensed images of tree orchards and its evaluation using olive plantations. *Computers and Electronics in Agriculture.* 61: 179-191
- Garrigues S, Alland D, Baret F & Weiss M (2006). Quantifying spatial heterogeneity at the landscape scale using variogram models. *Remote Sensing of Environment*. 103: 81-96
- Li H & Reynolds JF (1995). On definition and quantification of heterogeneity. *OIKOS.* 73: 280-284

Thank you

