Experiences from appliance of drones in practical research projects at Natural resources institute Finland

21.11.2024

Juho Hautsalo, Panu Korhonen, Kalle Ohralahti, Alma Lehti, Pentti Ruuttunen, Jere Kaivosoja

Outline of presentation

- Luke
- General info about drones in Luke
- Case studies from drone applications at Luke

Scientific activity

We have **650** ongoing research projects, including **80** EU projects. We coordinate **15** of these.

Scientific peer-reviewed articles in 2023

We promote the achievement of the United Nations Sustainable Development Goals with our research

Figures updated: 31 December 2023

Agriculture

- Research platforms and multi-purpose research facilities for studying the milk and feed production chain, as well as other livestock research.
- Research platforms for field water and nutrient management, load, and environmental condition simulations.
- Experimental fields for crop cultivation and plant production.
- Research platforms for carbon fluxes.
- Research platforms for bioeconomy and food system.
- Biogas plants and new energy solutions.
- Smart agriculture and agricultural technologies.
- Organic and biodiversity plots.
- Research on environmental impacts of agriculture, cultivation, and peatlands.

Crop and horticulture production

- Research, development, and breeding of garden plants, berries, fruits, vegetables, crops, ornamental plants, green building plants, tree species, and forest seedlings.
 - Greenhouses and their energy efficiency
 - Field research areas for open field cultivation: fields, container trial areas, growth tunnels
 - A fully closed-loop unit for vertical farming
 - Mobile plant phenotyping platform, imaging device for measuring plant activity during growth
 - Study of soil biota
 - Testing plant climate resilience
- Long-term conservation collections of horticultural plant genetic resources.

Phenotyping at Luke

Imaging

Case studies

© Luke

Using drones to spot a good place for trials, spring time:

• Things you can see from the air:

Alma Lehti, PhD student at Plant health group

Shadows

Deer precense

Weeds (thistle in this case)

Using drones to spot a good place for trials, autumn time

• Things you can see from the air:

Grass growth & condition, underground drainage

Wet areas

Weeds

Success is not quaranteed

Looks "homogenous" in May

... but not in July...

Soil moisture and ground water surface level determination with heat camera

Luke

Jaakko Heikkinen, Luke

Snowmold and calculations of living plants

Juho Hautsalo, **Kalle Ohralahti**, Sanna Kulmala, Marja Jalli

Kuva: Lantmännen Agro https://www.lantmannenagro.fi/palvelut-jainnovaatiot/viljely/kasvitautien-ja-rikkakasvien-tunnistuskuvat/lumihome/

Snowmold

- *M. nivale* causes yield reductions in grasses and winter cereals by killing overwintering plants
- Spreads through infested seed and crop residue
- Routine observation in VCU trials and also in some fungicide testing
- We also calculate the number of overwintered plants from plots to check the winter survival

Photo by kalle

Data and reference data

- Five experiments phenotyped for snowmold
- Three of these had also plant number per meter determined
 - 4 rye experiments
 - 1 winter wheat
- Drone flights over the experiments (Matrice 200 V2, camera zenmuse X5S 15mm, altitude 12-15m)
- Ortomosaic by drone deploy, isolation of plot data with **plot cut.**
- Data processing with excel

Thanks

Jesper!

Different indices to compare with drone image data

Index	Name	Formulation	References
VARI	Visible Atmospherically Resistant Index	$ ext{VARI} = rac{g-r}{g+r-b}$	Gitelson et al. [<u>46]</u>
ExG	Excess Green Index	ExG = 2 * g - r - b	Woebbecke et al. [<u>47]</u>
ExR	Excess Red Vegetation Index	$\mathrm{ExR} = rac{1.4R-G}{G+R+B}$	Meyer et al. [<u>48]</u>
ExB	Excess Blue Vegetation Index	$\operatorname{ExB} = \frac{1.4*B-G}{G+R+B}$	Mao et al. [<u>49]</u>
ExGR	Excess Green minus Excess Red	ExGR = ExG–ExR	Neto et al. [<u>50]</u>
GRVI	Green Red Vegetation Index	$\text{GRVI} = rac{G-R}{G+R}$	Tucker et al. [<u>51]</u>
MGRVI	Modified Green Red Vegetation Index	$\mathrm{MGRVI} = rac{G^2-R^2}{G^2+R^2}$	Bendig et al. [<u>6]</u>
GLI	Green Leaf Index	$ ext{GLI} = rac{2*g-r-b}{-r-b}$	Louhaichi et al. [<u>52]</u>
RGBVI	Red Green Blue Vegetation Index	$\text{RGBVI} = \frac{G^2 - B * R}{G^2 + B * R}$	Bendig et al. [<u>6]</u>
IKAW	Kawashima Index	$IKAW = \frac{R-B}{R+B}$	Kawashima et al. [<u>53]</u>

https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0402-3/tables/6

Rye 2023, excess green index vs snowmold, % excess green index vs. plant number

Snow mold infection (0-100%) / No plants (76-339)

Autumn 2021 (correlation 0.3-0.4)

VARI (Gilteson et al.)

Table 2. Pearson correlations (p<0.05). na=not observed, ns=not significant. Indices taken from: Lu, N., Zhou, J., Han, Z. et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 15, 17 (2019). https://doi.org/10.1186/s13007-019-0402-3

Index	Name	Reference	winter wheat trial 2021	rye trial 2021	rye trial 2022	rye trial 1 2023	rye trial 2 2023
	Visible Atmospherically						
VARI	Resistant Index	Gitelson et al. (2002)	ns	ns	-0,87	-0,78	-0,81
ExG	Excess Green Index	Woebbecke et al. (1995)	ns	ns	-0,86	-0,76	-0,81
	Excess Red						
ExR	Vegetation Index	Meyer et al. (2008)	ns	0,49	0,87	0,76	0,78
	Excess Blue						
ExB	Vegetation Index	Mao et al. (2003)	-0,38	ns	0,72	0,71	0,78
EVGR	Excess Green minus	Neto et al. (2004)	nc	nc	-0.85	nc	-0 79
LAGIN	Green Red		113	115	-0,05	115	-0,75
GRVI	Vegetation Index	Tucker et al. (1979)	ns	-0,41	-0,87	-0,76	-0,79
	Modified Green Red Vegetation			-	-	-	-
MGRVI	Index	Bendig et al. (2015)	-0,37	ns	0,76	0,72	0,79
GLI	Green Leaf Index	Louhaichi et al. (2001)	ns	ns	0,83	0,73	0,78
	Red Green Blue						
RGBVI	Vegetation Index	Bendig et al. (2015)	ns	0,47	0,62	-0,35	ns
IKAW	Kawashima Index	Kawashima et al. (1998)	0,44	0,81	0,54	-0,6	-0,63
No plants /	′m2		na	na	-0,81	-0,74	-0,76
normExG		<u> </u>	ns	ns	-0,84	0,42	ns

Conclusion snowmold & emergence

- Drones could be used to make things faster with large experiments
- But you need to be carefull with the conditions and timing of imaging
- Make also visual observation at least for the part of the field

JUOTVAI – project 2021 – 2023:

Alternative management options of couch grass and insect pests of oilseed crops

- Funders: Ministry of Agriculture and Forestry (Makera funding), Luke, Nylands Svenska Lantbrukssällskap, Maatalouskoneiden tutkimussäätiö (Finnish Research Foundation for Agricultural Machinery)
- Duration: 2021 2023
- Leader Pentti Ruuttunen (Luke, Plant health)

Objective:

- 1) To produce information applicable to practical crop production on alternative methods of control of couch grass (Elymus repens). Also, the profitability of the methods, as well as the effects of the possible removal of glyphosate on crop rotation planning and field tillage practices, are evaluated.
- Also other objectives but these are not now relevant.....

JUOTVAI 1 – experimental design 2021 – 2023 7 treatments, 4 reps, 2 locations

	2021	2022	2022
ireatment	2021	2022	2023
1. Direct seeding and glyphosate when needed	Barley	Oats	Barley
2. Glyphosate after harvest and plowing	Barley	Oats	Barley
3. Lighter cultivation practices	Barley	Oats	Barley
4. Lighter cultivation practices + plow	Barley	Oats	Barley
5. Plow and harrow every year	Barley	Oats	Barley
6. Kvick-Finn twice a year	Barley	Oats	Barley
7. Half-Fallow+ greenmanure 2021, direct seeding	Green		
	manure	Oats	Barley

Ilmakuva NSL/Inkoon kokeesta 17.8.2022 (Sanna Kulmala, Luke)

SIIKAJOKI

Peittävyys %

Crop coverage of couch grass %

Trial ID: JUOTVAI 1 RUU

VILJASADOT 2021-2023

Trial ID: JUOTVAI 1 RUU

Drones can supplement the results(Siikajoki) 30.8.2021. barley

15m	Suojaruutu	101 3	102 6	103 7	104 4	105 1	106 5	107 2	201 6	202 1	203 3	204 5	205 4	206 2	207 7	301 7	302 6	303 5	304 2	305 3	306 4	307 1	401 5	402 2	403 3	404 1	405 7	406 6	407 4	Suojaruutu
Liittymä																														
Juolave	hnän																													
peittävy	/ys-%	70	65	0	65	100	60	80	75	100	85	75	80	85	0	0	50	75	85	80	70	100	80	75	85	100	0	85	70	
30.8.202	21																													
Havainn	ot: Tim	no Lötjä	onen 8	Timo	Keräne	en																								

Good correlations with ground references

Couch grass coverage vs. NormExG Barley yield vs. NormExG

Oats 2022

Sunshine and lodging did not spoil the utilization of this orthomosaic

2022 data

NormExG = ExG / R + G + B

correlation 0.91

correlation 0.86

correlation -0.87

Drones in grassland research – case Luke Maaninka

Panu Korhonen Research Scientist at Grasslands and sustainable farming group at Luke Maaninka

What are drones good for in grassland production?

	Service type	Service product	Required instrumentation	TRL (1-9)
Drone services	Aerial canopy imaging	Plant biomass map	MS ¹ , RGB ² , LiDAR ³	7
assessed for their		Forage quality map	(RGB), MS, (HS ⁴)	5
applicability, required		Plant density map (overwintering)	RGB	6
instrumentation and		Canopy water stress map	MS, (HS)	6
highest estimated technology readiness		Continuous plant development monitoring	RGB, MS (autonomous drone-system)	3
levels (TRL; EU) for		Nitrogen uptake map	MS, HS	6
cattle farms in Finland.	3d-mapping	Canopy height map	Lidar, RGB	8
		Feed volume estimation (e.g. silos)	RGB, LIDAR	7
System Test, Launch	Canopy close-up imaging	Legume proportion estimation	RGB (high-resolution)	6
		Information for weed protection	RGB (high-resolution)	6
System/Subsystem TRL 8 Development	Large area mapping	Field parcel rating	RGB, MS, BVLOS⁵ drone	7
	Aerial soil imaging	Soil moisture map, drainage monitoring	Thermal camera, RGB, MS	6
Demonstration TRL 6	Pasture monitoring	Nutrient dispersion map (manure, urine)	RGB, MS	6
Technology Development TRL 5		Animal location and movement monitoring	RGB, thermal camera	6
Research to Prove		Grazing pressure optimization map	MS, RGB, LIDAR	3
Feasibility TRL 3	Environment monitoring	Plant biodiversity map	RGB, MS	3
Basic Technology TRL 2	Spreading and spraying	Oversowing, reseeding	UAV-mounted spreader	6
		Fertilizer application	UAV-mounted spreader	8
		Plant protection	Spraying system	6
LUKE	$^{1}MS = multispectral camera, {}^{2}RGB = red$	-green-blue camera (visible light), ³ LiDAR = light detection a	nd ranging, ⁴ HS = hyperspectral camera, ⁵	BVLOS = beyond visual lin

¹MS = multispectral camera, ²RGB = red-green-blue camera (visible light), ³LiDAR = light detection and ranging, ⁴HS = hyperspectral camera, ⁵BVLOS = beyond visual line of sight

Grass quantity and quality estimations using VNIR and SWIR UAS-hyperspectral cameras and machine learning

Aim was to develop remote sensing methods for estimating timothy grass yield and quality using data from an experiment with five different N fertilization levels (0-450kg N/ha/y)

The machine-learning process included feature extraction, feature selection, and a supervised learning process.

Oliveira et al. 2024 "*High-precision estimation of grass quality and quantity using UAS-based VNIR and SWIR hyperspectral cameras and machine learning.*"

Grass quantity and quality estimations using VNIR and SWIR UAS-hyperspectral cameras and machine learning

45

40

35

25

20

NRMSE% 30

Average and standard deviation spectral reflectance of each nitrogen level sample plots for RGB, multispectral (Altum), and hyperspectral (VNIR AFX10 and SWIR AFX17) cameras

The hyperspectral sensors predicted grass quantity and quality traits more accurately than the other tested systems.

Especially SWIR-hyperspectral performed well

Oliveira et al. 2024 "High-precision estimation of grass guality and guantity using UAS-based VNIR and SWIR hyperspectral cameras and machine learning."

Flowering and ecotype imaging with drones for developing red clover seed production (N-fiksu project)

Work aims to recognize good practices and factors affecting the success of red clover seed cultivation – drones used as a central part of data collection

- Images collected using two cameras simultaneously (5 fields in Central Finland):
 - high zoom for flower counting ("image sampling")
 - wider lense for photogrammetric map creation
- Also field surroundings mapped with high resolution imaging to find pollinator habitats
- 2024 summer first year of observations
- Reference data includes e.g. seed yield and quality, pollinator activity (bee counts) etc.

First tests with AI segmentation models seem to estimate flower count and area with good accuracy already.

Moving towards automatic drone data collection

©FGI

Semi-autonomous (remotely controlled) drone-in-a-box system implemented by Luke's collaboration partner Finnish Geospatial Institute for agronomic application in Mustiala, Finland.

Takes of and returns for charging to self-contained landing box

Data transfers automatically

- Real-time during flight
- After flight

4G/5G connectivity

Operations at Sail2 possible

Current version with multispectral camera

"Drone tractors" – drones tested for various work tasks

- DJI Agras T16 tested for oversowing and fertilization tasks and for operation as a part of robotic ecosystem
- Research on plant protection using drones has been prevented by regulations earlier, but now becoming possible!

🗇 Luke

Other recent research topics utilizing drones

Could rate of decline in quality be followed as a part of official grass variety trials using remote sensing? (N-fiksu project)

Field plots established in 2023 using 5 contrasting varieties in 4 replicates

Imaging done in 2024 using RGB imaging, multispectral drones (Phantom 4 MS) and hand-held hyperspectral camera (Specim IQ) + Zeiss corona extreme NIRS

High-resolution RGB for following heademergence (AI-based semantic segmentation models)

With hyperspectral three types of imaging:

- 1) on-field canopy from top with soil as a background, natural light
- 2) on-field from top with plant samples on uniform background, natural light
- 3) in-lab with plant samples on uniform background, standardized lighting

Other recent research topics utilizing drones

How reliably clover content can be estimated using UAVs on fields and how to do the imaging? (N-fiksu project)

Data acquisition started in 2024

Data collected from normal fields and from experimental plots

High resolution imaging and image processing using Albased models for semantic segmentation of images to "clovers" and "other plants"

An important question is the timing of imaging and how it affects interpretation of results (reference data of botanical composition at different stages needed for reference). Also light conditions have a big effect – highcontrast sunny conditions have been problematic.

Aim is to get objective tools for decision making in management to adjust N-levels, plant protection etc.

Conclusions & thanks for listening!

- Drone technology is a great tool for many things
- Design your work carefully and remember what you are seeking for
- Don't hesitate to contact the people I mentioned to you

