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A little about who I am

Currently: Senior scientist at FOSS
Previously: Postdoc at UCPH FOOD, UCPH Computer science, and FOSS
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About the talk's subject — an interdisciplinary research project

« Applying Artificial Intelligence (Al) in food research.
Collaboration between UCPH FOOD, UCPH Computer Science, and FOSS.

2-year Post-doc started 1. November 2019

* Projects:
« Predicting grain quality parameters with hyperspectral imaging. UNIVERSITY OF
« Foreign object detection (FOD) in X-ray images COPENHAGEN
* Predicting plant growth from RGB images

« Fast assessment of extruded pea products quality F o s s
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Today's wheat assessment
(Whole kernels examples)

* NIR spectroscopy:

e Protein level
« Moisture level

« Inspection of purity
« Damaged grain and foreign material.
- A person manually inspects a sample.
- Or machine vision tools. (*EyeFoss™)

05/12/2022
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Today’s grain quality assessment
(Flour examples)

« Baking quality

- Bake a bread and see how it looks

*https://www.grainscanada.gc.ca/en/grain-research/
« Sprouting damage euality/cereals/wheat/methods-tests.html

- Falling number.

* Mycotoxins
- Deoxynivalenol (DON)

* And many more

*https://www.fossanalytics.com/en/products/alphatec



https://www.grainscanada.gc.ca/
https://www.grainscanada.gc.ca/en/grain-research/export-quality/cereals/wheat/methods-tests.html
https://www.grainscanada.gc.ca/en/grain-research/export-quality/cereals/wheat/methods-tests.html
https://www.fossanalytics.com/en/products/alphatec
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Why NIR hyperspectral imaging (HSI)?
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HSI contains both spatial and spectral
information of the grains.

*Hyperspectral image
of grains

Spectral features:

= NIR spectra of kernels (single kernel Infratec):

* Protein content

Spatial features:

 Moisture content

\ Images of kernels (Eyefoss)
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« Grain type classification

015
010
0.05

€ 000

g -005

-0.10
-015
-0.20

* Grain purity

- But what if we combine spatial and spectral?
 Falling number?
« Sprouting energy?
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* Mycotoxin?

224 wavelenght
channels
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Why Convolutional Neural
Networks (CNN)?

What are CNNs?

» Deep artificial neural network.

Conv layer

CNNs can be trained to
find patterns useful in
predicting
parameters from large
Image datasets!
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Project Roadmap:

Imaging Preprocessing the
setup? hypercube?

/’————_____-\

correct data?
setup -

Sample
preparation?

Network
architecture?

CNN

FC-layer
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Classifier:

R = N-classes
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Regression
= Number

080955945553
1

0080000000080050%
o429

3388

CNN networks for HSI?

Flexible deep learning -hyperspectral
NIR solution for grain analysis
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Use cases:

1. Bulk grain variety classification * Acquire hypercubes
8 grain classes « Crop sliding window
(128 x 128 x 224)
« 16000 for training
« 6400 for validation
« 3200 for test

Wheat H4 Halland wheat

Wheat H1

Why:

Grain variety Is a
standard
classification
problem for HSI

Solved with both
spectroscopy and
machine vision!

1000 1200 1400 1600
Wavelength (nm)
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Use Case: Grain variety classification

UNIVERSITY OF COPENHAGEN

Network architecture:

Downsample
layer

224 to 3 spectral
channels.

Benchmark CNN
for RGB

ResNetl8

8 classes?

05/12/2022 10

7x7 conv2d, 64, /2

Maxpool /2

i
3x3 conv2d, 64 E
1
3x3 conv2d, 64 E
1
J
3x3 conv2d, 64
3x3 conv2d, 64

5\\\
\

/

-
e

10‘00 llbO 12b0 13’00 14’()0 15‘00

16b0

10‘00 11’00 12‘00 13’00 14‘00 15’00 16‘00

0.5

0.0 4

(c

1000 1100 1200 1300 1400 1500 1600

Wavelenath [nm]

Hypercube

Pseudo RGB

3x3 conv2d, 512

3x3 conv2d, 512

Avg pool, 512

T



® UNIVERSITY OF COPENHAGEN 05/12/2022 11
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Wheat H1

Wheat H3

Midsummer
rye
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Benchmark CNN classification
CNN and HSI CNN a.nd gray scale SVM and spectra
images
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Use Case: Grain variety classification
- Benchmark results
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Hypercubes
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Lesson learned so far:
Both spectral and spatial
properties are different
between grain varieties!

CNN on hypercubes
improves performance!
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Robustness: Density dependence of the kernels — CNNs are

sensitive
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Robustness: How does it perform when small changes are

introduced Robustness of the model:
_—————— Tninsi+5:+5s Experiment conducted in

Trained on all | m—-val-s, three sequences:
training data! S1,S,,and Sy

Small adjustment of
setup between §,,and S;
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Robustness: How does it perform when small changes are

Introduced

*’

Trained only on
training data
from 1.
sequence!
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Robustness of the model:

Experiment conducted in
three sequences:
Sl’ Sz, and S3
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Robustness: How does it perform when small changes are

Introduced

* Train S1-Train S1 + 5S> + S5
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CNN on hypercubes may

iImprove robustness!
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Take home

« Combining spatial and spectral properties provides additional information!

e Combining HSI and CNNs can be done and can ..
* Improve performance and perhaps robustness.

« Utilize both spatial and spectral information Imaging 5
ata

preprocessing?

Sample
preparation?
« But a complete understanding of
the “roadmap” is important when
applying deep learning!

Network
architecture?

Flexible grain quality assessment
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- Can we do regression with a
Continued work CNN directly on HSI data?

2. Protein Regression

> PhD project by Ole Engstrgm®* Know protein regression is

possible with NIR!

Spectral filter Downsample
layer layer

ESNESIEE — Protein %

Results:

CNN 3D filter
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The CNN can ..
- Learn spectral
preprocessing

50 grain samples _ - Learn .
- Each ~100 g. N Regression
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*« Regression Analysis on Hyperspectral Images », UCPH Computer science, 2021
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Thank you for listening

* The project continues with Ole Engstram PhD

 If anyone has an interesting grain problem where
hyperspectral imaging and CNNs could be used then contact
me © on esd@foss.dk



