Hyperspectral analysis in plant breeding

Erik Schou Dreier, esd@foss.dk Senior Scientist, FOSS.

Kim Steenstrup Pedersen (UCPH Computer Science) Klavs Martin Sørensen (UCPH FOOD/FOSS) Birthe Møller Jespersen (UCPH FOOD) Toke Lund-Hansen (FOSS)

UNIVERSITY OF COPENHAGEN

A little about who I am

Currently: Senior scientist at FOSS Previously: Postdoc at UCPH FOOD, UCPH Computer science, and FOSS

About the talk's subject – an interdisciplinary research project

- Applying Artificial Intelligence (AI) in food research.
 - Collaboration between UCPH FOOD, UCPH Computer Science, and FOSS.
 - 2-year Post-doc started 1. November 2019

- Projects:
 - Predicting grain quality parameters with hyperspectral imaging.
 - Foreign object detection (FOD) in X-ray images
 - Predicting plant growth from RGB images
 - Fast assessment of extruded pea products quality

FOSS

COPENHAGEN

Today's wheat assessment (Whole kernels examples)

- NIR spectroscopy:
 - Protein level
 - Moisture level
- Inspection of purity
 - Damaged grain and foreign material.
 - \rightarrow A person manually inspects a sample.
 - → Or machine vision tools. (*EyeFoss[™])

Today's grain quality assessment (Flour examples)

- Baking quality
 - \rightarrow Bake a bread and see how it looks
- Sprouting damage
 → Falling number.
- Mycotoxins
 - → Deoxynivalenol (DON)
- And many more

<u>*https://www.grainscanada.gc.ca/en/grain-research/</u> euality/cereals/wheat/methods-tests.html

<u>*https://www.fossanalytics.com/en/products/alphatec</u>

NIR solution for grain analysis

Use cases:

- Bulk grain variety classification
 8 grain classes
- Acquire hypercubes
- Crop sliding window (128 x 128 x 224)
 - 16000 for training
 - 6400 for validation
 - 3200 for test

Why: Grain variety is a standard classification problem for HSI

Solved with both spectroscopy and machine vision!

Benchmark CNN classification

Use Case: Grain variety classification

- Benchmark results

Lesson learned so far: Both spectral and spatial properties are different between grain varieties!

CNN on hypercubes improves performance!

Robustness: Density dependence of the kernels – CNNs are sensitive

Robustness: How does it perform when small changes are introduced

Robustness of the model: Experiment conducted in three sequences: S_1, S_2 , and S_3

Small adjustment of setup between S_2 , and S_3

	Αι	ıgu	st	20	20		September 2020								
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat		
						1			1	2	3	4	5		
								Setup ad			justed				
2	3	4	5	6	7	8	6	7	8	9	10	11	12		
							Tr	Train S3			Val S3				
9	10	11	12	13	14	15	13	14	15	16	17	18	19		
Tra	in S1		Va	al S1											
16	17	18	19	20	21	22	20	21	22	23	24	25	26		
23	24	25	26	27	28	29	27	28	29	30					
Val S2		Train S2													
30	31														

Robustness: How does it perform when small changes are introduced

Robustness of the model: Experiment conducted in three sequences: S_1, S_2 , and S_3

Small adjustment of setup between S_2 , and S_3

August 2020								September 2020								
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Γ	Sun	Mon	Tue	Wed	Thu	Fri	Sat		
						1	Γ			1	2	3	4	5		
									Setu							
2	3	4	5	6	7	8		6	7	8	9	10	11	12		
								Tr	ain S	3	Val S3					
9	10	11	12	13	14	15	[13	14	15	16	17	18	19		
Tra	in S1		Va	al S1												
16	17	18	19	20	21	22		20	21	22	23	24	25	26		
23	24	25	26	27	28	29	27		28	29	30					
	Vä	Val S2		Train												
30	31															

Robustness: How does it perform when small changes are introduced

Take home

- Combining spatial and spectral properties provides additional information!
- Combining HSI and CNNs can be done and can ..
 - Improve performance and perhaps robustness.
 - Utilize both spatial and spectral information

 But a complete understanding of the "roadmap" is important when applying deep learning!

Imaging

setup?

Data

preprocessing?

-

*« Regression Analysis on Hyperspectral Images », UCPH Computer science, 2021

Thank you for listening

- The project continues with Ole Engstrøm PhD
 - If anyone has an interesting grain problem where hyperspectral imaging and CNNs could be used then contact me ⁽³⁾ on esd@foss.dk