Progress and challenges with high resolution UAV imaging and multispectral time series data

Morten Lillemo, Sahameh Shafiee, Tomasz Mróz, Henrik Lassegård

NPPN worskshop Båstad 24.11.2022

Norwegian University of Life Sciences

Research questions

- 1. Multispectral UAV imaging for trait prediction
 - which camera is best, Micasense RedEdge or Phantom 4 multispectral?
- 2. Can we use P-splines to estimate heading and maturity dates from multispectral UAV time series data?
- 3. Can we use high-resolution UAV images to detect wheat heads with deep learning?

1. Camera comparison – which is best?

Phantom 4 Multispectral (P4M)

	P4 Multispectral	Micasense RedEdge M
Red	650 ± 16 nm	668 ± 5 nm
Green	560 ± 16 nm	560 ± 10 nm
Blue	450 ± 16 nm	475 ± 10 nm
Red Edge	730 ± 16 nm	717 ± 5 nm
NIR	840 ± 26 nm	840 ± 20 nm

Norwegian University of Life Sciences

1. Camera comparison – which is best?

Micasense RedEdge-M

Phantom 4 Multispectral (P4M)

- Yield trial with 300 spring wheat lines x 2 reps at Vollebekk 2021
- 5 parallel mission flights:
 - Beginning of June tillering stage
 - Last week of June stem elongation
 - Beginning of July heading stage
 - End of July onset of maturity
 - End of July maturing progresses
- Trait prediction using multispectral relationship matrix and random effect models
- Cross-validation (80/20 train/test, 200 iterations)

Multispectral similarity (covariance) matrices

Phantom 4 Multispectral

4 Plant phenotyping NMBU

Trait prediction accuracy

- No visible difference in trait prediction performance between the two cameras
- Results align with our previous work using machine learning for trait prediction (Shafiee *et al.,* submitted)
 - camera has influence on numerical reflectance values, but no influence on prediction accuracy
- Phantom 4 is just as good as Micasense RedEdge

2. Spline interpolation of time-series data

- Inspiration from Pérez-Valencia *et al.* (2022) (Scientific Reports 12: 3177)
- Data used: season 2021, P4M camera
- NDVI calculated based on raw bands
- NDVI extrapolated:
 - NDVI @sowing = 0
 - NDVI @harvest = 0
- Spline function fitted for each experimental unit (plot)
- Calculated 1st derivative based on the spline function

Raw NDVI data. Dots are flights for a sample of plots

Spline-interpolated NDVI data

P-spline interpolation of dense mission data - NDVI

Correlation matrix of NDVI values for each interpolated date (n=1000) across the season. Red - r < 0, Blue - r > 0

Red - r < 0, Blue - r > 0Season start

Season end

P-splines and their derivatives – example of a field trial plot

- Blue NDVI curve over the season (spline-interpolated, scaled and centered)
- Red first spline function derivative based on the blue curve, scaled and centered (mean = 0, sd = 1)
- Orange vertical line -heading date
- Green vertical line maturity date
- Hard to deduce heading date
- Maturity date happens after the steep decline of NDVI values have started to slow down (at local maximum of Dx after the global minimum of Dx)

3. High-resolution low altitude UAV flights

 Matrix 300 RTK with DJI Zenmuse P1 camera

- Tested in 2022 field season
 - 12 meter flight altitude

 Are images good enough for head detection? AAAS Plant Phenomics Volume 2021, Article ID 9846158, 9 pages https://doi.org/10.34133/2021/9846158 Plant Phenomics

Database/Software Article

Global Wheat Head Detection 2021: An Improved Dataset for Benchmarking Wheat Head Detection Methods

Norwegian University of Life Sciences

Using close-up images from the field robot

• YOLO5 deep learning model

Image size:1024x1024 Cropped from the main image

Detected heads using YOLO5 Accuracy: up to 95%

Image captured at 12 m using Zenmuse P1

Zoomed and cropped image

Norwegian University of Life Sciences

Applying YOLO5 model on the image

Best Accuracy = 69%

The way ahead

- In some cases the accuracy is very low
- Is this related to the camera angle or light condition?
- How can we improve the model?

Accuracy = 16%

Take-home messages

- Phantom 4 Multispectral is as good as Micasense RedEdge for trait prediction in wheat
- Using P-splines could be a workable solution for estimating maturity dates from time-series multispectral data
- Wheat head detection using highresolution low-altitude UAV flights is possible
 - but further training of deep learning models will be needed

Acknowledgements:

Sahameh Shafiee, NMBU Tomasz Mroz, NMBU Henrik Lassegård, NMBU

Graminor PhenoCrop project

6P3 project