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Research questions

1. Multispectral UAV imaging for trait prediction

— which camera is best, Micasense RedEdge
or Phantom 4 multispectral?

2. Can we use P-splines to estimate heading and
maturity dates from multispectral UAV time
series data?

3. Can we use high-resolution UAV images to
detect wheat heads with deep learning?
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1. Camera comparison — which Tp]
IS best?

* Yield trial with 300 spring wheat lines x 2 reps
at Vollebekk 2021

« 5 parallel mission flights:

— Beginning of June — tillering stage
Micasense — Last week of June — stem elongation
RedEdge-M — Beginning of July — heading stage
— End of July — onset of maturity
— End of July — maturing progresses

* Trait prediction using multispectral relationship

matrix and random effect models
Phantom 4

Multispectral  « Cross-validation (80/20 train/test, 200
(P4M) iterations)
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Multispectral similarity (covariance) matrices N

Micasense RedEdge Phantom 4 Multispectral
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Trait prediction accuracy

* No visible difference in trait
prediction performance between the
two cameras

» Results align with our previous work
using machine learning for trait
prediction (Shafiee et al., submitted)

— camera has influence on numerical
reflectance values, but no influence
on prediction accuracy

 Phantom 4 is just as good as
Micasense RedEdge
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2. Spline interpolation of time-series data

* Inspiration from Pérez-Valencia et al.
(2022) (Scientific Reports 12: 3177)

 Data used: season 2021, P4M camera
 NDVI calculated based on raw bands

 NDVI extrapolated:
— NDVI @sowing =0
— NDVI @harvest =0

» Spline function fitted for each
experimental unit (plot)

e Calculated 1st derivative based on the
spline function
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P-spline interpolation of dense mission data - NDV| Ty
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P-splines and their derivatives — example of a field trial plot N M

» Blue — NDVI curve over the season
(spline-interpolated, scaled and centered)

» Red — first spline function derivative
based on the blue curve, scaled and
centered (mean =0, sd =1)

* Orange vertical line —heading date

Scaled value

» Green vertical line — maturity date

 Hard to deduce heading date /t Spline fn
Dx
- Maturity date happens after the steep N sty
decline of NDVI values have started to Y
slow down (at local maximum of Dx after | | | |
the global minimum of Dx) May Jun Jul Aug Sep

9 Plant phenotyping NMBU Norwegian University of Life Sciences



3. High-resolution low altitude UAV flights v

 Matrix 300 RTK with DJI
Zenmuse P1 camera

» Tested in 2022 field season

— 12 meter flight altitude

Pl lant Ph '
Plant Phenomics P ant P enomlcs
Volume 2021, Article ID 9846158, 9 pages A SCIENCE PARTNER JOURNAL
https://doi.org/10.34133/2021/9846158

« Are images good enough for

head detection? Database/Software Article

Global Wheat Head Detection 2021: An Improved Dataset for
Benchmarking Wheat Head Detection Methods
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Using close-up images from the field robot N —
* YOLOS deep learning model

Image size:1024x1024 Detected heads using YOLO5
Cropped from the main image Accuracy: up to 95%
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Image captured at 12 m using Zenmuse P1
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Applying YOLO5 model on the image

Best Accuracy = 69%
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he way ahead

* In some cases the accuracy is very low

* |Is this related to the camera angle or light
condition?

 How can we improve the model?
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ake-nome messages

 Phantom 4 Multispectral is as good as
Micasense RedEdge for trait prediction
In wheat

» Using P-splines could be a workable
solution for estimating maturity dates
from time-series multispectral data

» Wheat head detection using high-
resolution low-altitude UAV flights is
possible

—but further training of deep learning
models will be needed
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