Phenotyping in breeding using UAV and consumergrade cameras

Key reflections/results from a Ph.D. study.

Jesper Svensgaard

KØBENHAVNS UNIVERSITET

Questions and research

- Is phenotyping reliable if you use different RGB cameras under different conditions (reality check!), and is there a need to use spectral correction?
- Are there any added value from multispectral and thermal measurements to select rescilient genotypes?

[
		Tools												
Traits		Multi/hyperspectral	LIDAR	Thermal	Fluorescence	Technological readiness level (TRL)								
	RGB	Multi/hy		4	Fluor									
	\odot			\odot		1	2	3	4	5	6	7	8	9
Plant density, plant emergence														
Cover fraction														
Plant/Canopy height														
Ear density														
Fruit/inflorescence size														
Grain number and size														
Leaf/plant glaucousness														
Phenology (heading, anthesis etc.)														
Lodging														
Weed infestation														
Diseases														
Vegetation index (VI) monitoring														
Green area index (GAI)														
Senescence														
Fraction of intercepted radiation														
Leaf orientation														
Leaf rolling														
Chlorophyll content														
Leaf/canopy temperature														
Leaf/Canopy chlorophyll fluorescence														

RGB imaging and spectral correction

Table 1: Combination of experiment, date of image acquisition, camera, exact time of image acquisition of grey-scale panels (low altitude 1.5-10 m) and timespan of images for mosaicking (90 m and 50 m altitudes)

				Image capture time (CET)				
Experiment	Crop	Date	Camera	Grey panels, 1.5-10 m	Mosaic 1, 90 m	Mosaic 2, 90 m	Mosaic, 50 m	
1	Winter wheat	14 April	X5	10.05	10.01-10.02	10.07-10.09	10.18-10.21	
1	Winter wheat	14 April	P3	11.04	11.10-11.11	11.15-11.16	11.21-11.24	
1	Winter wheat	18 April	X5	12.16	12.14-12.15	12.22-12.23	13.15-13.18	
1	Winter wheat	18 April	P3	12.55	12.52-12.54	12.57-12.58	13.40-13.43	
2	Winter barley	7 April	X5	12.15			12.15-12.23	
2	Winter barley	7 April	Р3	13.27			13.21-13.26	

- 59 W. barley genotypes
- 2 RGB cameras (P3, X5)
- Sunny conditions, 50 m
- Diverse genotypes in color and vigor
- Datasets with and without spectral correction
- Estimating coefficients for accuracy and precision
- Testing camera*light*altitude*genotype interactions

Spectral correction procedure

Precision and accuracy with/without correction

Accuracy Vs Precision

Interaction between camera and genotype

Interaction between camera and genotype

Mixed anova analysis showed, that

-Several cases with camera by genotype interaction

-High r (=1.00) and spectral correction not enough to remove interaction

-Minute differences between genotypes = challange – important?

-Light changes during flight, SfM and procedure not optimal

- Crop color, soil

Conclusions of paper

- Overall precise measurements seen from pearson corr. coeff.
- Overall especially ELM improved accuracy and reproducibility – close to benchmark
- Light is an issue, altitude is not
- Correction did not remove camera effect despite good r and NSE
- Interaction between camera and genotype due to minute differences between genotypes with no practical importance
 - Spectral correction may be overrated from agronomical/breeding pov

Drought – RGB vs MS vs Thermal

Drought – RGB vs MS vs Thermal

Camera	Date	Time (CET)	Wheat Growth stage				
RedEdge	12 June		Mid grainfill				
	15 June		Mid grainfill				
	18 June	At noon	Mid grainfill				
	27 June		Late grainfill				
	3 July		Start Maturity				
Sequoia	25 May		End heading				
	31 May	At noon	Anthesis				
	7 June		Early grainfill				
XTR	25 May	14.00	End heading				
	31 May	14.00	Anthesis				
	5 June*	11.00, 13.30	Early grainfill				
	15 June*	11.00, 13.30	Mid grainfill				
	27 June*	11.30, 14.00	Late grainfill				
P4	2 June		Anthesis/early				
	5 June		grainfill				
	12 June	A	Early grainfill				
	18 June	At noon	Mid grainfill				
	6 July		Mid grainfill				
	-		Start Maturity				
P3	26 June	At noon	Late grainfill				

Drought – RGB vs MS vs Thermal

Thermal measurements:

- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Thermal measurements:

- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Vegetation indices:

- NDVI and nExG best, treatment effect from 2 June (tiny difference)
- nExG late treatment x genotype
- nExG (and NDVI) higher genotype repeatability

Thermal measurements:

- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Vegetation indices:

- NDVI and nExG best, treatment effect from 2 June (tiny difference)
- nExG late treatment x genotype
- nExG (and NDVI) higher genotype repeatability

Overall:

- Surface roughness problematic
- Facility + soil surface problematic
- Single rows difficult
- Stay-green interesting both RGB and MS; Thermal challanging
- 2020 data being analysed now!!

Thermal measurements:

- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Vegetation indices:

- NDVI and nExG best, treatment effect from 2 June (tiny difference)
- nExG late treatment x genotype
- nExG (and NDVI) higher genotype repeatability

Overall:

- Surface roughness problematic
- Facility + soil surface problematic
- Single rows difficult
- Stay-green interesting both RGB and MS; Thermal challanging
- 2020 data being analysed now!!

Some main conclusions of the Ph.D.

- RGB cameras are reliable, and camera effect most likely overestimated in breeding – camera setup IMPORTANT
- Light during flight need attention, fly high!
- Cheap consumergrade UAVs add value lot's of applications, however need finetuning
- Include spectral correction if possible during repeated flights, however no need if single campaigns. Stick to the same camera.
- Multispectral needs to become cheaper and higher resolution, however have advantages for some purposes
- Thermal imaging have potentials, however so does stay-green multisensor
- First step = validation of UAV done! Next step: How to use data and variation...not yet unfolded (Reynolds et al 2020 is inspirational)

Thank you for your attention

• Thank you to enthusiastic partners and colleagues

Jesper Svensgaard Mail: jsv@concito.dk Mobile: +45 27205024

- Jesper Rasmussen
- Fulai Liu
- Eva Rosenqvist
- Svend Christensen
- Signe Jensen
- Jesper Cairo Westergaard
- Simon Fiil Svane
- Kristian Thorup Kristensen
- Mira Arpe Bendevis
- Saiful Azim
- Jon Nielsen
- Kasper Jakob Jensen
- Tomke S. Wacker
- All at CROP SCIENCE