Phenotyping in breeding using UAV and consumer-grade cameras

Key reflections/results from a Ph.D. study.

Jesper Svensgaard

KØBENHAVNS UNIVERSITET
Questions and research

- Is phenotyping reliable if you use different RGB cameras under different conditions (reality check!), and is there a need to use spectral correction?

- Are there any added value from multispectral and thermal measurements to select resilient genotypes?
RGB imaging and spectral correction

- 59 W. barley genotypes
- 2 RGB cameras (P3, X5)
- Sunny conditions, 50 m
- Diverse genotypes in color and vigor

- Datasets with and without spectral correction
- Estimating coefficients for accuracy and precision
- Testing camera*light*altitude*genotype interactions
Spectral correction procedure

- Incident irradiance
- Surface irradiance
- At-sensor radiance
- Radiance map
- R, G and B digital number
- Reflectance Greyscale (VideometerLab)
- Vegetation indices
- Crop coverage etc.
- Grey-scale reflectance panels
- R, G and B digital number adjusted to reflectance

ELM

Color corrected

\[ExG = \frac{(2G - R - B)}{G + R + B} \]
Precision and accuracy with/without correction

Overall high r (0.96-0.99)

NSE improved from correction, esp ELM (-8.68 to 0.19)

Overall SRD decreased using calibration (0.12 to 0.06)

$r = \frac{\sum(y_1 - \bar{y}_1)(y_2 - \bar{y}_2)}{\sqrt{\sum(y_1 - \bar{y}_1)^2 \sum(y_2 - \bar{y}_2)^2}}$

$\text{NSE} = 1 - \frac{\sum(y_1 - y_2)^2}{\sum(y_1 - \bar{y}_1)^2}$

$\text{SRD} = 1.96\sqrt{2\sigma_r^2}$
Interaction between camera and genotype
Interaction between camera and genotype

Mixed anova analysis showed, that

- Several cases with camera by genotype interaction

- High r (=1.00) and spectral correction not enough to remove interaction

- Minute differences between genotypes = challenge – important?

- Light changes during flight, SfM and procedure not optimal

- Crop color, soil
Conclusions of paper

- Overall precise measurements seen from Pearson correlation coefficient.
- Overall especially ELM improved accuracy and reproducibility – close to benchmark.
- Light is an issue, altitude is not.
- Correction did not remove camera effect despite good r and NSE.
- Interaction between camera and genotype due to minute differences between genotypes with no practical importance.
- Spectral correction may be overrated from agronomical/breeding pov.
Drought – RGB vs MS vs Thermal
Drought – RGB vs MS vs Thermal

<table>
<thead>
<tr>
<th>Camera</th>
<th>Date</th>
<th>Time (CET)</th>
<th>Wheat Growth stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RedEdge</td>
<td>12 June</td>
<td>At noon</td>
<td>Mid grainfill</td>
</tr>
<tr>
<td></td>
<td>15 June</td>
<td></td>
<td>Mid grainfill</td>
</tr>
<tr>
<td></td>
<td>18 June</td>
<td>At noon</td>
<td>Mid grainfill</td>
</tr>
<tr>
<td></td>
<td>27 June</td>
<td></td>
<td>Late grainfill</td>
</tr>
<tr>
<td></td>
<td>3 July</td>
<td></td>
<td>Start Maturity</td>
</tr>
<tr>
<td>Sequoia</td>
<td>25 May</td>
<td></td>
<td>End heading</td>
</tr>
<tr>
<td></td>
<td>31 May</td>
<td>At noon</td>
<td>Anthesis</td>
</tr>
<tr>
<td></td>
<td>7 June</td>
<td></td>
<td>Early grainfill</td>
</tr>
<tr>
<td>XTR</td>
<td>25 May</td>
<td>14.00</td>
<td>End heading</td>
</tr>
<tr>
<td></td>
<td>31 May</td>
<td>14.00</td>
<td>Anthesis</td>
</tr>
<tr>
<td></td>
<td>5 June*</td>
<td>11.00, 13.30</td>
<td>Early grainfill</td>
</tr>
<tr>
<td></td>
<td>15 June*</td>
<td>11.00, 13.30</td>
<td>Mid grainfill</td>
</tr>
<tr>
<td></td>
<td>27 June*</td>
<td>11.30, 14.00</td>
<td>Late grainfill</td>
</tr>
<tr>
<td>P4</td>
<td>2 June</td>
<td>At noon</td>
<td>Anthesis/early grainfill</td>
</tr>
<tr>
<td></td>
<td>5 June</td>
<td></td>
<td>Early grainfill</td>
</tr>
<tr>
<td></td>
<td>12 June</td>
<td></td>
<td>Mid grainfill</td>
</tr>
<tr>
<td></td>
<td>18 June</td>
<td></td>
<td>Mid grainfill</td>
</tr>
<tr>
<td></td>
<td>6 July</td>
<td></td>
<td>Start Maturity</td>
</tr>
<tr>
<td>P3</td>
<td>26 June</td>
<td>At noon</td>
<td>Late grainfill</td>
</tr>
</tbody>
</table>
Drought – RGB vs MS vs Thermal

- T canopy (°C)
- nExG
- NDRE
- NDVI

- TKW
- 13C
- Yield

High TKW
Low 13C
High Yield
High VI
Low T

Low TKW
High 13C
Low Yield
Low VI
High T

- Low TKW
- High 13C
- Low Yield
- Low VI
- High T
Overall results

Thermal measurements:
- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield
Overall results

Thermal measurements:
- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Vegetation indices:
- NDVI and nExG best, treatment effect from 2 June (tiny difference)
- nExG late treatment x genotype
- nExG (and NDVI) higher genotype repeatability
Overall results

Thermal measurements:
- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Vegetation indices:
- NDVI and nExG best, treatment effect from 2 June (tiny difference)
- nExG late treatment x genotype
- nExG (and NDVI) higher genotype repeatability

Overall:
- Surface roughness problematic
- Facility + soil surface problematic
- Single rows difficult
- Stay-green interesting – both RGB and MS; Thermal challenging
- 2020 data being analysed now!!
Overall results

Thermal measurements:
- No early symptoms
- No treatment x genotype
- Low genotype repeatability
- Fine correlation to genotype yield

Vegetation indices:
- NDVI and nExG best, treatment effect from 2 June (tiny difference)
- nExG late treatment x genotype
- nExG (and NDVI) higher genotype repeatability

Overall:
- Surface roughness problematic
- Facility + soil surface problematic
- Single rows difficult
- Stay-green interesting – both RGB and MS; Thermal challanging
- 2020 data being analysed now!!
Some main conclusions of the Ph.D.

- RGB cameras are reliable, and camera effect most likely overestimated in breeding – camera setup IMPORTANT
- Light during flight need attention, fly high!
- Cheap consumer grade UAVs add value – lot’s of applications, however need finetuning
- Include spectral correction if possible during repeated flights, however no need if single campaigns. Stick to the same camera.
- Multispectral needs to become cheaper and higher resolution, however have advantages for some purposes
- Thermal imaging have potentials, however so does stay-green - multisensor
- First step = validation of UAV done! Next step: How to use data and variation...not yet unfolded (Reynolds et al 2020 is inspirational)
Thank you for your attention

• Thank you to enthusiastic partners and colleagues

- Jesper Rasmussen
- Fulai Liu
- Eva Rosenqvist
- Svend Christensen
- Signe Jensen
- Jesper Cairo Westergaard
- Simon Fiil Svane
- Kristian Thorup Kristensen
- Mira Arpe Bendevis
- Saiful Azim
- Jon Nielsen
- Kasper Jakob Jensen
- Tomke S. Wacker
- All at CROP SCIENCE

Jesper Svensgaard
Mail: jsv@concito.dk
Mobile: +45 27205024