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DNE We are expert in remote sensing for agriculture
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Mechanistic crop Automated data Cloud-based data engine Artificial Decision
knowledge processing built for scale intelligence making




Our 20+ agronomists and data scientists are expert at
turning crop images into valuable agronomic traits

Our team is

laser focused
on delivering
excellence




Agronomic ~ Artificial

DNE ur remote sensing expertise arises from agronomic
nowledge combined with artificial intelligence
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State trait estimates is the basis phenotyping

High-througput phenotyping provide numerous state traits
(biophysical, biochemical, sanitary etc...)

Disease
guantification
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Leaf area estimation Tree volume

Organs number Chlorophyll
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DNE Two main algorithm’s families can be used

Biophysical :
phy Measured trait
'——_- model
n R . Green Cover Fraction
- emote sensmg

« physical » calibration

Sensor’s signal

Empirical

Calculated trait S
model

Leaf Area Index

Computer science
semantic calibration

Measurement of a physical
flux




ML is a powerful family of empirical model

ML Model

N
A

Model parameters are
updated during training




Raw Data

Traditional
Machine Learning

Deep Learning

Deep Learning models learn representation

Change of Decision on better
representation representation

Choice of handcraft
features

—b— Vegetation index —>

- Color space

—} Learned features + Learned classifier —} f.\"‘




DNE Deep Learning allows to access new traits

Green Cover Fraction

Trait Biophysical - - -
Machine Learning Deep Learning
v

Leaf Area Index Ve v
Height v
Lodging Score v
Leaf Chlorophyl Content v v
Canopy Chlorophyll Content v v
Plants Density Vv

Crop Cover Fraction

Senescent Fraction

Head Density
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Disease Fraction




DNE The domain shift problem

A domain shift is a change in the data distribution between an algorithm's
training dataset and the encountered images when deployed.

Sunflower

Same than
source domain

Sunflower
detection

Different than
source domain

X




Does it cause a robustness problem ?

Robustness in plant phenotyping is to the capacity of an algorithm to

produce an unbiased trait estimate for all images acquired with the same

Training

protocol of acquisition.
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How much does domain shift affects ML algorithms
performance in Plant Phenotyping ?




DNE Session of acquisition as a proxy for diversity

Session of Vector X Time unit X Experimental unit ‘ Fixed unit of diversity
acquisition (ex: 1 Flight over one trial )

UAV plant counting Wheat head localization

3-4 leaves Sony alpha 6000
Post-Flowering Sony alpha 6000
Loam soil Cloudy condition N
Row spacing of 17,5 Cloudy condition
Row spacing of 45 cm GSD of 4.5 mm cm

GSD of 4.5 mm




Studies are conducted on few sessions

Example on plant counting

Test
independency

>
<

Study

Crop Localization

s
]
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(Quan et al., 2019) Maize 10 v
(Ribera et al., 2017) Sorghum 2
(Valente et al., 2020) Spinach 1
(Liv et al., 2020) Maize 2 v
(Lin and Guo, 2020) Sorghum 2 v
(Madec et al., 2019) Wheat 2 v v
(Xiong et al., 2019) v Wheat 10+ v




DNE The ideal dataset covers all posibilities

Training diversity = Application diversity

Session4 g Session 5 Session 6

Session1 | Session 3

Session 2 | Session 4 Session 7 @ Session8 § Session 9

The ideal dataset should include as many sessions of acquisition
as possible to cover expected diversity !
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Sharing the labelling burden
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DNE An example of large, collaborative dataset

44 Global WHEAT
Dataset

Database/Software Article

Global Wheat Head Detection 2021: An Improved Dataset for
Benchmarking Wheat Head Detection Methods
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Data Distribution
Source

Creation of a
domain shift
with sessions’

metadata

\ Session 3

How to measure the domain shift ?

Train dataset

Out-of-Domain (OOD)

Source

Test dataset

In-Domain (ID)

Target | Source

Target
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Y NE Faster-RCNN to localize and count

classifier

Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun

¥ Rol pooling

P
proposals 7 &
/5 /—//

E(p? u? tu:r U) — L"Cls (p: ’U;) + 1 ['U; E 1]£b0}{ (tua U) Region Proposal Network
ﬁcls( ’ ﬂ‘) — logpu
Loox (t*,0) = Y L™ (t —v;)

ic{z,y,w,h}

feature maps

o

conv layers
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Design metrics to evaluate robustness

Localization

TP: True positive, FP: False positive , FN:

False negative

Intersection over
Union (loU)

Accuracy
(Acc)

Average Domain
Accuracy (ADA)

Area of Overlap @
Area of Union .

TP(IoU)

lold =

TP(IoU)+FP(IoU)+FN(IoU)

Counting

Root Mean Square
Error (RMSE)

Relative RMSE
(rRMSE)

n
- 2
EZ(yi — X;)
i=1

RMSE

A\

rRMSE =
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Average domain
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accuracy
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OOD largely underperform against ID model
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Improve size of
training dataset

‘44 Global WHEAT
Dataset

How to solve the domain shift problem ?

Explicitly train

Use engineering
E> for robustness

best practices

% Stanford
J

University

kaggle
Alcrowd &  \W/|L[®S




Global Wheat Challenges

A) Research Code Competition

$15,000

Global Wheat Detection
! O ! O Can you help identify wheat heads using image analysis? e ! ! O O I
u University of Saskatchewan - 2,245 teams - 10 months ago

erview Data Code Discussion Leaderboard Rules Team Host My Submissions

2021 Alcrowd £ v = & 4
(”\lll\i(l 2021 !$4000USD OO+

Lo GIFS | BTty Kuhota e €0 hiphen oo

Nutrien - a Founding Partner

Al

Quantomics

Growing science for life
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DNE Common characteristics of winning solutions

Ensemble

Solution name | Data preparation : Architecture training
Augmentation strateq

Madec No No Faster-RCNN No

Data

: DUNGNB NG Mixup ; Custom EfficientDet; Random
d mosaic FasterRCNN subsampling
GWC_2020 R
= 2 OverFeat Jigsaw Mixup, Cutmix Efficentdet a”dor‘,“
subsampling
3 Jawu No Mixup YoloV3 No
: RandomTeamNa No Mosaic Volovs Domalr.1
me subsampling
Model is applied
2 David_jeon on 1600 px Mosaic; CutMix Yolovb No
GWC_2021 iImages
3 SMART Network to CutMix Yolov4 Yes

correct image
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DNE Winning solutions in 2020 and 2021
overperforms our baseline
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Improve size of
training dataset

‘44 Global WHEAT
Dataset

How to solve the domain shift problem ?

Use engineering Explicitly train
best practices E> for robustness

™ Stanford

University

kaggle
Alcrowd &  \W/|L[®S
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DNE Explicitly train for robustness is not working yet

WIiLDs: A Benchmark of in-the-Wild Distribution Shifts

Prediction (y) animal species tumor perturbed gene  bioassays wheat head bbox  toxicity

asset wealth

Input (x) camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review

time, region country, rural-urban user

Domain (d) camera hospital batch scaffold location, time demographic
# domains 323 5 51 120,084 47 16
# examples 203,029 455,954 125,510 437,929 6,515 448,000
o What do Black
)OL and LGBT
N people have to
Train example Lol do with bicycle
licensing?
& As a Christian,
| will not be
NN patronizing
Test example ) any of those
Q{ businesses.
e
§ Beery et al. Bandi et al. Taylor et al. Hu et al. Davidetal. Borkan et al.
Adapted 2020 2018 2019 2020 2021 2019

Christie et al.

code
sentiment  autocomplete
git repository
2,686 8,421
539,502 150,000
Overall a solid import
package that numpy as np
has a good
quality of
construction
for the price. norm=np.___
| *loved* my import
French press, subprocess
it's so perfect as sp
and came with
all this fun p=sp.Popen()
stuff! stdout=p.___
Ni et al. Raychev et al.
2019 2016




29

Improve size of
training dataset

‘44 Global WHEAT
Dataset

How to solve the domain shift problem ?

Use engineering Explicitly train
best practices for robustness

™ Stanford

University

kaggle
Alcrowd &  \W/|L[®S




Environmental
conditions

Genetic
variations

30

Trait evaluation over large range of conditions

%

Trait evaluation
error

is difficult

The higher the
expected diversity, the
more difficult it is to
measure a trait
accurately.
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ML method for trait
estimation

ML for phenotyping is more than a script

Initial evaluation

Production

What are the limit of the algorithm ?

Is my training dataset representative of my
expected diversity ?

Do | use most of the engineering best practices?

Do | evaluate on different conditions than training ?
Do | use more than one session of acquisition ?

Is my performance the same over different sessions
of acquisition ?

How do | check the accuracy of my algorithm ?
How do | improve the model over time ?




Data acquisition

Hiphen’s Human in the loop approach

Human-in-the-loop approach

Data upload

Automated quality
acquisition reports

Acquisition
protocol for
drones

32

We give you
feedback

Data processing

©RE®

Data validation

Counting validation (per mission)
Syngenta > Syngenta UAV Campaign 2021 > Sunfiower_FR_1040_Niort F2 > 2021/07/02 00:00:00

List of all processes launched for this mission/flight

Slanmed sun [ e,
ot | dutn e Py St NP1 Vst
O 0106 162I4Y 201090616201 201006182273

Do we have the same number of pplots in the results file than in the parcellaire 7
I parcetie i resus e alidaton

31T 0w 177

Do we have any negative values ?
[r——

2021 pm7m2 021000

Check the counting quality on images visually

Auto-generated data validation
report

Data visualization & analytics

Browse and visualize all the traits computed

Can we evaluate trial sites affected by water
stress?
= s
[ ]
W warer soess —t= :

We help you to understand your data
with analytics




g0 hiphen

You want to
discover more?




DNE Discover more about our solutions with the catalogs

PhendScale

by hiphen

Professional High-Throughput
Plant Phenotyping From Drones

N %

Discover Now _’R

PhendMobile

by hiphen

Ground-based Plant Phenotyping
Solutions To Scale Up Advanced
Plant Characteristics Assessment

N %

Discover Now 7%

34

PhendaStation

by hiphen

Custom-made Plant
Phenotyping Systems
For Greenhouses

N %

Discover Now _’R

PhendResearch

by hiphen

Custom R&D Solutions To Develop
Your Own Plant Phenotyping
Remote Sensina Annlications

Coming Soon!



https://hiphen.sharepoint.com/Documents%20partages/2_COMMERCIAL/06_MARKETING/03_BROCHURES/01_PhenoScale/Hiphen_PhenoScale_Catalog.pdf
https://hiphen.sharepoint.com/Documents%20partages/2_COMMERCIAL/06_MARKETING/03_BROCHURES/03_PhenoStation/Hiphen_PhenoStation_Generic_Catalog.pdf
https://hiphen.sharepoint.com/Documents%20partages/2_COMMERCIAL/06_MARKETING/03_BROCHURES/02_PhenoMobile/Hiphen_PhenoMobile_Catalog.pdf
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Welcome to Avignon'!
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Hiphen

120 rue Jean Dausset
Agroparc — Batiment technicité
84140 Avignon

France

+33 (0)7 84 14 31 63

hiphen-plant.com | contact@hiphen-plant.com



