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We are expert in remote sensing for agriculture

Mechanistic crop 
knowledge

Automated data 
processing

Cloud-based data engine 
built for scale

Artificial 
intelligence

Decision 
making
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Our 20+ agronomists and data scientists are expert at 
turning crop images into valuable agronomic traits

Our team is 
laser focused 
on delivering 

excellence 

Discover our team in video
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Our remote sensing expertise arises from agronomic 
knowledge combined with artificial intelligence

And more…

Agronomic 
expertise

Artificial 
intelligence
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Who am I ?

Phd « Robust trait estimates with Deep
Learning on high resolution RGB imagery »

Science Manager

2015

2017

2021

2022

Master thesis – Computer 
vision for bioinformatics

Data scientist

edavid@hiphen-plant.com
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State trait estimates is the basis phenotyping

Drone

Leaf area estimation Tree volume

Organs number Chlorophyll

Disease
quantification

Etc...

High-througput phenotyping provide numerous state traits 
(biophysical, biochemical, sanitary etc...)
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Two main algorithm’s families can be used

Sensor’s signal

Measurement of a physical
flux

Biophysical
model

Empirical
model

Measured trait

Calculated trait

- Remote sensing
- « physical » calibration

Green Cover Fraction

Leaf Area Index- Computer science
- semantic calibration
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ML is a powerful family of empirical model

Loss
Model parameters are 

updated during training

Training dataset

ML Model
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Deep Learning models learn representation
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Deep Learning allows to access new traits

10

Trait Biophysical
Empirical

Machine Learning Deep Learning
Green Cover Fraction ✓ ✓ ✓

Leaf Area Index ✓ ✓ ✓

Height ✓ ✓

Lodging Score ✓ ✓

Leaf Chlorophyl Content ✓ ✓ ✓

Canopy Chlorophyll Content ✓ ✓ ✓

Plants Density ✓ ✓

Crop Cover Fraction ✓

Senescent Fraction ✓

Head Density ✓

Disease Fraction ✓
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The domain shift problem

A domain shift is a change in the data distribution between an algorithm's 
training dataset and the encountered images when deployed.

Sunflower
detection

Different than
source domain

Same than
source domain

Sunflower

Maize
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Does it cause a robustness problem ?

Robustness in plant phenotyping is to the capacity of an algorithm to 
produce an unbiased trait estimate for all images acquired with the same

protocol of acquisition.

Training

Cultivar 1

Cultivar 2

Cultivar 3
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How much does domain shift affects ML algorithms
performance in Plant Phenotyping ?
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Session of acquisition as a proxy for diversity

3-4 leaves

Loam soil

Row spacing of 45 cm

Session of 
acquisition

Vector X Time unit X Experimental unit
(ex: 1 Flight over one trial ) 

Fixed unit of diversity

Sony alpha 6000

Cloudy condition

GSD of 4.5 mm

Post-Flowering

Row spacing of 17,5 
cm

Sony alpha 6000

Cloudy condition

GSD of 4.5 mm

UAV plant counting Wheat head localization
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Studies are conducted on few sessions

Study UAV Crop Sessions Localization Test 
independency

(Quan et al., 2019) Maize 10 ✓

(Ribera et al., 2017) ✓ Sorghum 2

(Valente et al., 2020) ✓ Spinach 1

(Liu et al., 2020) ✓ Maize 2 ✓

(Lin and Guo, 2020) ✓ Sorghum 2 ✓

(Madec et al., 2019) Wheat 2 ✓ ✓
(Xiong et al., 2019) ✓ Wheat 10+ ✓

Example on plant counting
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The ideal dataset covers all posibilities

The ideal dataset should include as many sessions of acquisition 
as possible to cover expected diversity !

Training diversity = Application diversity

Session 1

Session 2

Session 3

Session 4

Session 4 Session 5 Session 6

Session 7 Session 8 Session 9
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Sharing the labelling burden

Institution #1

Dataset #1

Institution #2

Dataset #2

Institution #3

Dataset #3
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An example of large, collaborative dataset
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How to measure the domain shift ?

Source

Session 1 Session 2

Target

Session 3 Session 4

Out-of-Domain (OOD)

Source

In-Domain (ID)

Target Source

Target

Data Distribution

Creation of a
domain shift
with sessions’
metadata

Train dataset Test dataset
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Faster-RCNN to localize and count

• Rr
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Design metrics to evaluate robustness

• σ
𝑇𝑃(𝐼𝑜𝑈)

𝑇𝑃(𝐼𝑜𝑈)+𝐹𝑃(𝐼𝑜𝑈)+𝐹𝑁(𝐼𝑜𝑈) 𝑟𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

ො𝑥

Localization Counting

1

𝐷
σ𝑑=1
𝐷 1

𝑛𝑑
∗ σ𝑖=1

𝑛𝑑 𝐴𝑐𝑐𝑑𝑖

Intersection over 
Union (IoU)

Average Domain 
Accuracy (ADA)

TP: True positive, FP: False positive , FN: 
False negative

Accuracy
(Acc)

Root Mean Square 
Error (RMSE)

Relative RMSE
(rRMSE)
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OOD largely underperform against ID model

ID OOD
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How to solve the domain shift problem ? 

Improve size of 
training dataset

Use engineering 
best practices

Explicitly train 
for robustness
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Global Wheat Challenges

2020

2021

2200+

400+
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Common characteristics of winning solutions

Rank Solution name Data preparation
Data 

Augmentation
Architecture

Ensemble 
training 
strategy

Baseline Madec No No Faster-RCNN No

GWC_2020

1 DungNB No
Mixup ; Custom 

mosaic
EfficientDet; 
FasterRCNN

Random 
subsampling

2 OverFeat Jigsaw Mixup, Cutmix Efficentdet
Random 

subsampling
3 Javu No Mixup YoloV3 No

GWC_2021

1
RandomTeamNa

me
No Mosaic Yolov5

Domain 
subsampling

2 David_jeon
Model is applied 

on 1600 px 
images

Mosaic; CutMix Yolov5 No

3 SMART
Network to 

correct image
CutMix Yolov4 Yes
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Winning solutions in 2020 and 2021 
overperforms our baseline

Faster
RCNN

A
cc

ur
ac

y
GWC20 GWC21

Fa
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e 
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e 
ra

te

Fl
as

e
ne

ga
tiv

e
ra

te

False 
negative rateFalse positive 

rate

Faster
RCNN Faster

RCNN

GWC20 GWC21 GWC20 GWC21
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How to solve the domain shift problem ? 

Improve size of 
training dataset

Use engineering 
best practices

Explicitly train 
for robustness
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Explicitly train for robustness is not working yet
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How to solve the domain shift problem ? 

Improve size of 
training dataset

Use engineering 
best practices

Explicitly train 
for robustness
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Trait evaluation over large range of conditions 
is difficult

Environmental
conditions

Genetic
variations Trait evaluation

error

The higher the 
expected diversity, the 

more difficult it is to 
measure a trait 

accurately.
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ML for phenotyping is more than a script

ML method for trait 
estimation

Training

Initial evaluation

Production

1. What are the limit of the algorithm ? 
2. Is my training dataset representative of my

expected diversity ?
3. Do I use most of the engineering best practices?

1. Do I evaluate on different conditions than training ?
2. Do I use more than one session of acquisition ?
3. Is my performance the same over different sessions 

of acquisition ?

1. How do I check the accuracy of my algorithm ?
2. How do I improve the model over time ?
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Hiphen’s Human in the loop approach

Data processing Data validation Data visualization & analyticsData upload

We give you 
feedback

Data acquisition

Acquisition 
protocol for 

drones

Automated quality 
acquisition reports

Auto-generated data validation 
report 

Browse and visualize all the traits computed

We help you to understand your data 
with analytics

Human-in-the-loop approach
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You want to 
discover more?
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Discover more about our solutions with the catalogs

Discover Now Discover Now

Discover Now Coming Soon!

https://hiphen.sharepoint.com/Documents%20partages/2_COMMERCIAL/06_MARKETING/03_BROCHURES/01_PhenoScale/Hiphen_PhenoScale_Catalog.pdf
https://hiphen.sharepoint.com/Documents%20partages/2_COMMERCIAL/06_MARKETING/03_BROCHURES/03_PhenoStation/Hiphen_PhenoStation_Generic_Catalog.pdf
https://hiphen.sharepoint.com/Documents%20partages/2_COMMERCIAL/06_MARKETING/03_BROCHURES/02_PhenoMobile/Hiphen_PhenoMobile_Catalog.pdf
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Welcome to Avignon !



120 rue Jean Dausset

Agroparc – Bâtiment technicité

84140 Avignon

France

Hiphen

hiphen-plant.com   |   contact@hiphen-plant.com

+33 (0)7 84 14 31 63


