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Geospatial Applications

®* Notion of geographical space fundamental to
human activities and the environment

®* Applications with spatial characteristics among
the most exciting in computing

https://media.licdn.com/mpr/mpr/jc/ https://en.wikipedia.org/wiki/
AAEAAQAAAAAAAAXBAAAAIDEYM]jY2Zjc3LWIyOWMEND Spatial_analysis#/media/

Y2YS1hZGE2LWRjNDU3MDg20TE0ZQ.jpg File:Snow-cholera-map.jpg
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Location-based services, Data visualizations,
augmented reality e.g., maps
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Challenges in Geospatial Applications

* Big variation in data
formats and volume

e Some data is “cheap” to obtain,
other is “expensive”

e Examples: Drone images, GPS
traces, satellite data vs. visual
ranking of breeds by humans

http://wiki.openstreetmap.org/w/images/e/e7/
Nottingham_gps_traces_ex_osm_20110105.png
https://
en.wikipedia.
org/wiki/
Unmanned_a
erial_vehicle
#/media/
File:Interspe
ct_UAV_B_3.
1.png

http://
futurecropping.eng
.au.dk/maps/204




UNIVERSITY OF COPENHAGEN

Challenges in Geospatial Applications

* Large amount of users and potentially
complex simultaneous requests

e Popular datasets need to be serviced to many users,
and transformed by different programs

e Examples: Google Maps & shortest paths, Future
Cropping data platform & analysis services

Q0 CropManager

o O

Markudbytte >
Markkort

Markinspekter v

Tabel
Datamana; gement >

Indstillinger > \
NDVI benchmarking
in SEGES Crop
Manager, tech
transfer from Future

Cropping project
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Challenges in Geospatial Applications

°* Much labor needed to —
derive knowledge from
varied data

e “Expensive” data can be too
small or too noisy for
phenomenon studied, not
obvious how to leverage “cheap”
data

e Examples: Soil samples vs.
satellite or land use data

LOADING

AGRICULTURAL
POLLUTION
POTENTIA

https://www.e-education.psu.edu/natureofgeoinfo/
c9_p6.html
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Lessons From Managing Geospatial Data

* Challenge: Big variation in data formats
and volume
e Lesson 1: "Cheap” vs. "expensive” data

e Lesson 2: The rise of standardization, open-
source software, and large geospatial datasets

* Challenge: Large amount of users and
potentially complex simultaneous
requests

e Lesson 3: From software to services
e Lesson 4: Telemetry turns behavior into data

* Challenge: Much labor needed to derive
knowledge from varied data
e Lesson 5: Embed intelligence in services




Lesson 1: "Cheap” vs.
"Expensive” Data
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http://www.agronomy.k-

What makes data “expensive”? siate sdufserviess/

soil-analysis/index.html

* Lack of automated
sensing technology

e For example, soil samples or
phenotype annotations
require human labor for each
sample

* Lack of data description
(metadata) or data
quality controls

e For example, drone images
can turn out to be very noisy
data due to measurement
errors, including alignment,
color filters, variability in T | 13
cloud cover, Varlablllty in RGB https://www.nordgen.org/ngdoc/plants/ppp_sekr/

PPP_Basic_Documents/Basic_documents/

pl‘OfIles across drones Eg[;a?romoting_nordic_plant_breeding_for_the_futu
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What makes data “expensive”?

https://dribbble.com/shots/
2055315-We-Love-Data

* Lack of data-centric
organizational culture,
tools, and technology

e For example, top management
does not see data as first-class
entity in business, or there is no

data team or platform
established

* Lack of possibilities to
externalize data
management costs

e For example, there may be no
service providers in the given
area, or data may be strategic
differentiator

WE LOVE DATA.

‘- -

o -

o °
quantcast @ dribblle

http://gst.dk/

Sentinel-2 satellite, image by Rama,
https://upload.wikimedia.org/wikipedia/
commons/3/3d/Sentinel_2-IMG_5873-
white_%28crop%29.jpg
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Becoming Data-Centric

Convert unstructured
to structured data

l

Reduce and visualize
structured data

!

Mine structured data
algorithmically

l

Use data and insights
to train and scale
intelligent services

10

Every step is
important: Partial
achievement is
possible

Achieving the whole
loop requires teams of
both data engineers
and data scientists
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The challenges of exploiting “cheap” data

* Data as intangible asset
e Investment needed to deliver value!

®* (Getting to structure: Goal is to represent data
as tables (preferred) or matrices

e Non-trivial transformations to structure data, e.qg.,
how to think of free text or images as tables or
matrices?

e Heterogeneity in representation of data across
different databases in different table formats
(schema-level) or of same data in different sources
with different attributes (instance-level)

e Errors in data leading to the need for data quality
procedures and data cleaning

11




Lesson 2: The Rise of
Standardization, Open-
Source Software, and Large
Geospatial Datasets
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Standardization in Geospatial Data

* Open Geospatial
Consortium (0GC)

e Standards body for geospatial
data

e Work on data formats, e.qg., well
known text (WKT), NetCDF

e Work on protocols, e.g., WFS,
WCS, WMS, WPS
* Open-source software

e Spatial application server and
CMS: GeoServer, GeoNode

e Spatial relational database:
PostgreSQL/PostGIS

e Raster analytics: Rasdaman

e Spatial Big Data: Spatial Hadoop,
Simba, GeoMesa, GeoWave

13

http://www.opengeospatial.org/

()GC

Making location count.

http://www.osgeo.org/

#‘OSGeo

Your Open Source Compass

http://
spatialhadoop.
cs.umn.edu/

http://www.rasdaman.org/

rasdarnan |

data manse
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Standardization helps in structuring data

14

Common data model eases non-trivial
transformations, provides way to leverage
previous efforts

Open-source software reduce data
heterogeneity at both schema and instance

levels

Standard formats allow for large, high-
quality datasets to be curated and shared

BUT...

e Standardization tends to work when data targeted is
supposed to become commonly used across industry

e Spreads costs of integrating data among participants

e Hard to achieve when data provides proprietary
competitive advantage to organizations
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The New Problem: Too Much Data!

®* Standards and open-source software pave the
way to large datasets

* Concern: What if the data does not fit my
spreadsheet?

Data provided by Rasmus L. Hjortshgj at Sejet

Winterbarley 2016
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Data Reduction Methods

* Data aggregation, * Data selection,
e.g., heatmaps e.g., skyline,

cartographic

generalization
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“The Skyline Operator”, Stephan Borzsonyi,
Donald Kossmann, Konrad Stocker, ICDE 2001

“Hotmap: Looking at Geographic Attention”,
Danyel Fisher, Microsoft Research (2007)
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Research Highlight: Declarative Cartography

Adapting data to scale of visualization medium

Not enough

pixels to
display

“everything”

Work done in collaboration with P. K. Kefaloukos &:#
and M. Zachariasen, results in ICDE 2014 @

17
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Example: Selecting Airports

Before :

®* Too much information - illegible map
®* Not clear how to deal with zooming
®* Not obvious how to pick objects to display

18
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Example: Selecting Airports
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Cartographic Constraints

Proximity constraint: minimum distance between records
(measured in pixels on screen)

‘ Delete \ ‘ ‘
Conflicts ™~ Delete
Visibility: maximum records per unit area (within a map
“tile”)
Limit Delete —
o5 o %Ioo °
CN N A N N ) 00 (00O
Q00 o :> 000 o
o () o o Delet
e o000 o 0|00 0f clete
o Q0 o o0

20
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Records

Optimization Problem

21

h Delete ——-)i\‘

Conflicts

Reclords
0
o0

—

O

— 4

Delete — ‘/‘
®

Cartographic constraints and record
importance lead to optimization problem

Delete minimum weight cover
Set multicover problem > NP-Hard

|

Conflicts
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Declarative Cartography

22

GENERALIZE
airports TO airports_zoom
WITH ID airport_id
WITH GEOMETRY wkb_geometry
AT 18 ZOOM LEVELS
WEIGH BY
num_departures
SUBJECT TO
proximity 10
visibility 16

Creating maps is the job of data-journalists,
bloggers, high-level programmers... not
mathematicians

Cartographic Visualization Language (CVL):
transforms input data into zoomable data

Constraints expressed in SQL
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Compiling CVL into SQL

CREATE CONSTRAINT
proximity AS

CREATE CONSTRAINT
visibilitv AS
GENERALIZE /\

airports TO airports_zoom w

WITH ID airport_id

WITH GEOMETRY wkb_geometry CVL SQL r r

AT 18 ZOOM LEVELS Comoil St(;rre q Input Slvers
mpiler

WEIGH BY ompric Procedures Tables

num_departures

Database Engine
proximity 10

visibility 16

SUBJECT TO

* Leverage database theory and technology to
compute generalization inside DB (in-situ)

®* Our prototype: PostgreSQL + PostGIS + Python
+ CVXOPT

e Could be any database, e.g., a parallel one! '6

23




Lesson 3: From Software to
Services
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Did you ever install Google?

https://www.google.dk/?
gws_rd=cr&dcr=0&ei=AxsIWu-8MouE6AS-3YKgDA

Google

(=

Google Search I'm Feeling Lucky

Google offered in: Dansk Fgroyskt

®* Service hides software and hardware
complexity

®* Data engineers can make service scalable to
millions or even billions of users

* Allows for modular interaction
e Results from search, maps, Q&A, etc

25
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Layering in Web Services

®* Services widely exposed
on the web, accessible
via HTTP

®* Proxies route requests
to multiple back-end
services and join results

®* Services themselves can
be implemented on
distributed and
parallel architectures

26
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Proxies

Source: Freedman (partial)
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The Machinery

——

Servers
« CPUs
« DRAM
* Disks

cluster
switch

Clusters

Racks
» 40-80 servers
* Ethernet switch

27 Source: Dean .
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The Joys of Real Hardware

Typical first year for a new cluster:

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come
back)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6
hours)

~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity
losses)

~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

28 Source: Dean ‘




UNIVERSITY OF COPENHAGEN

Reliability & Availability

®* Things will crash. Deal with it!

e Assume you could start with super reliable servers
(MTBF of 30 years)

e Build computing system with 10 thousand of those
e Watch one fail per day

® Fault-tolerant software is inevitable

®* Typical yearly flakiness metrics
e 1-5% of your disk drives will die
e Servers will crash at least twice (2-4% failure rate)

29 Source: Dean . o
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Complexity lives even inside a single server...

Processor 1

For all applications
to share

=

Processor n

bt

=7

1=CacHe

T
2 V3l B

ahe

8 MB L3 cache

For all applications Inclusive cache policy
to share minimize traffic from s

2~

» -2 __¥_




But the picture is not to scale!

\ Size of

last-level cache

Size of
memory

What about the size of disk?

31
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Storage Hierarchy

Andromeda .
10°  Tape /Optical NE= 2,000 Years
Robot
106 Disk 2 Years
1.5h
100  Memory N > hr
10 On Board Cache This Campus 10 min
2 On Chip Cache < | Nis Room
1 Regqisters My Head 1 min

,,,,,,,

Source: Gray (partial) .
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Common Issues in Designing Services

* Consistency
e How to deal with updates from multiple clients?

®* Coherence
e How to refresh caches while respecting consistency?

* Scalability

e What happens to resource usage if we increase the
#clients or the #operations?

* Fault Tolerance

e Under what circumstances will the service be
unavailable?

33
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Research Highlight: Data Platform for Future
Cropping Project e /en.wikipedia.orgwik/

Spatial_analysis#/media/
File:Snow-cholera-map.jpg

* Traditional Approach to Data
Management in Agriculture
e Build BIG database, e.g., data warehouse

e Lots of time spent mapping schemas,
defining what queries to answer

e Inflexible, high cost, limited to specific

questions
* Future Cropping Data Platform  Spatial Analysis
e Build a service-centric data platform Work in collaboration
with KU PLEN, Aarhus U,
e Data platform manages and serves and other
geospatial data for analysis services partners in Future
e Flexible, pay-as-you-go integration of Cropping project;
analytic functions MSc thesis of Mads
Engesgaard Jacobsen and
e Separation of concerns: Expertise in ongoing PhD of Yiwen

scalability for data platform Wang

34
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Examples of Services

[M Future Cropping Service X JacoblHaxbree) - X
&« C @ beorn3.netlab.eng.au.dk w0 ¢ o]

Android device

Latitude: 56.17195799
Longitude: 10.19199914
Altitude : 113 m

Simulated GPS
Latitude: 56.18555429
Longitude: 10.22106206

Altitude: 193 m
Distance to Android device: 2.35 km

Simulated weather station

Air temperature: 19.89 °C
Air pressure: 1016.54 hPa
Wind speed: 9.02 m/s

®* Online streaming data from moving objects
overlaid with Sentinel-2 satellite data and field
polygons
e Demo available at: http://beorn3.netlab.eng.au.dk/

35
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Examples of Services

CONTROLS

Toggle application maps
Toggle NDVI map

Download application map

° F|eId polygons and NDVI map with optlon to
download fertilizer application maps

e Demo available at:
http://beorn3.netlab.eng.au.dk/wps/

36
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Data Platform Foundations and Trends

* GeoNode ° Trends

‘ e More users
e More datasets

‘ Web Interface

$ e More frequent updates
‘ GeoServer ‘ e More analytical
services

{

‘ PostGIS ‘

* Existing systems not enough for the
future

e General caches, e.g., Redis, Memcached, not
specialized for geospatial data

e (Geospatial caches, e.g., GeoWebCache, only cover
subset of protocols (WMS)

37
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Vecstra: Core ideas

38

Support for transparent scalability on
concurrent requests

e Communicate with cache through subset of WFS/WCS
protocols so as to make solution “drop-in”

e Reverse proxy layer routes to multiple caches or falls
back to GeoNode for advanced functionality

Low latency in serving data
e Employ state-of-the-art in-memory spatial indices

e Revisit algorithms to speed up specific operations,
e.g., geometry intersection, counting queries

Efficiency in use of computational
resources

e Design cache multi-threading for performance on
multi-core servers
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Vecstra Architecture

‘ Proxy 1
GeoServer I—l PostGIS
‘ Proxy 2
Vecstra
Embedded WFS/WCS In-memory
‘ PI"OXY 3 HTTP Server Handlers Spatial Indices
Vecstra
Embedded WFS/WCS In-memory
HTTP Server Handlers Spatial Indices

‘ Proxy n

39
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Initial Evaluation: WFS

* Workload modeling Future Cropping

e Crop Status Service
e Field-sized query windows scaled between 0.5x-2x

e Fields picked uniformly at random, window centered in
point within bounding box of field

e Layers: field polygons, topography, soil, rain distribution
(future: also NDVI, climate)

e No updates for now; need to model update patterns

* Single-node multi-core server

e Vector and NDVI layers in data platform as of early
2017 take roughly 23 GB 2> in-memory processing

e Server: 16 cores; 2 sockets; HT not used; 128 GB RAM
e Thread affinity or taskset used to limit cores used

e 20 client threads per server core in separate machine;
10Gbit Ethernet

40
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- - Linear scale-up (Vecster)

- - Linear scale-up (GeoServer)
| 9 Vecster

¢ GeoServer

Throughput in requests per second
Latency in milliseconds

Scale factor

2000 |

1500

1000 F

500 |

Initial Evaluation: WFS Spatial Range Query
Multi-Core Scalability

- - Linear scale-up (Vecster)

- - Linear scale-up (GeoServer) [
¢ \ecster

¢ GeoServer

8 10 12 14

Scale factor

Both systems scale relatively well with increasing
numbers of cores in high-load, read-only setup

Under minimal tuning of both systems, Vecstra
shows promise of delivering better latency and
scaling efficiency
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Initial Evaluation of WFS Spatial Range
Query: Where does the time go?

42
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1 2 4 8 16

EEE Geometry Intersection
Bl Other R-Tree

[ Other Data Store

Bl Serialization

Server-side latency
(HTTP not included)

Recall we increase
client threads (20) to
push utilization up

On the server side,
most of the query time
IS spent in geometry
intersection operations,
i.e., in refine step of
filter-refine scheme

More work to be done
here ©




Lesson 4: Telemetry Turns
Behavior into Data
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Usage logs are data!

* Web log records queries of
a web service

e User access patterns include
spatial and temporal
information

* Model user attention and

skew In access patterns

e For better caching, deployment of
computational infrastructure

e For detection of patterns leading to I
. . - - - eve Jurvetson - ps://WWW.TIICKF.com
bias in business decisions photos/jurvetson/162116759
e Products that users most looked at

e Breeds that users pay “too much”
attention to

44
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Research Highlight: TileHeat

* Case study of The Digital Map Supply
e Most popular WMS web service of Danish National
Survey and Cadastre, now Danish Geodata Agency
* Issues

e Render service is slow to compute tiles (for some map
services)

e Bulk data updates by Danish municipalities
e In combination: Bad performance (for some map
services)
* Data we have analyzed
e Request log last 5 years: ~1B requests total

e Q4 2011 log for most popular map service: ~800K
requests per day

o
'@
) ® Geodatastyrelsen Work done in collaboration with P. K.
Kefaloukos and M. Zachariasen, results
2 o ast in ACM SIGSPATIAL GIS 2012 Q
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Exploitable Properties

queries/second

Mon Tue Wed Thu Fri Sat Sun o )
Prediction of where people will
look on the map

1) Seasonal variation in load (24-hour, week)
2) We can predict* the tiles people will tend to
request

3) Strong skew in requested tiles
*) For the maps we have studied, but not necessarily a
pl"iOI"i! Source: Danish Geodata Agency

46
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Ideal Situation

47

queries/second

A
3071

update data precompute -
and invalidate missing :erve 1he5
tiles tiles rom cache

= | —>

Schedule massive data updates during low load

Time to refresh cache with new tiles before
peak load

Serve tiles from cache during peak load

Source: Danish Geodata Agency
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Problem

queries/sec

o1 N /\

2.5 days for 12 zoom-levels at National

Survey and Cadastre \/\

1 1
midnight noon midnight

* It takes a long time to generate all tiles
* O(4m) for m zoom-levels

48 Source: Danish Geodata Agency
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Our goal

®* Predict the heatmap of tomorrow

£,%,%,7

49




UNIVERSITY OF COPENHAGEN

Heat Dissipation: A Real Example

1
“ . '
-, .. : 7 o .
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Heat“r'nap based oh a small
sample of requests (real data)
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Heat Dissipation: A Real Example

- v
% Lo
w v ",

Tt

Dt TS
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Real heatmap

After dissipation

* In addition to heat dissipation, exponential
smoothing model used in predictions to capture

variations in time

51
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Evaluation
Hit ratio
4 OPT . /95%
: HEAT -HW
50% -
L ¢ 500K tiles # tiles
. needed for computable

- 100 % hit
- ratio

during low load

52
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Lesson 5: Embed Intelligence

IN Services
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From querying and calculation to prediction

* Types and examples of

g BEWARE: Data
quality iIs the
primary success
factor!

%WI rOT air Tarirms

in the country together with
my planned interventions for
this year

)#/media/
Wykoff.JPG

54
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Research Highlight: GANDALF project .o

* Soil Contamination Management
in Urban Areas

e Limited sets of pre-selected indicators of
potential pollutants in chemical analyses

* GANDALF

e Leverage historical data in spatial
interpolation model

e Enrich existing techniques with machine
learning approaches, make data-driven
decisions, e.g., for where to sample next

e Move towards untargeted chemical
fingerprinting with high dimensionality
and merging with historical data

Lots of machine learning
work going on at DIKU!

55

Spatial_analysis#/media/
File:Snow-cholera-map.jpg

Spatial Analysis

Work in collaboration

with KU PLEN, MOE,

KMC Nordhavn, and
other partners in
GANDALF project
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Lessons From Managing Geospatial Data

* Challenge: Big variation in data formats
and volume
e Lesson 1: "Cheap” vs. "expensive” data

e Lesson 2: The rise of standardization, open-
source software, and large geospatial datasets

* Challenge: Large amount of users and
potentially complex simultaneous
requests

e Lesson 3: From software to services
e Lesson 4: Telemetry turns behavior into data

* Challenge: Much labor needed to derive
knowledge from varied data
e Lesson 5: Embed intelligence in services

56
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Conclusion

* Spatial Applications & Challenges

* From Challenges to Lessons
e Lesson 1: "Cheap” vs. “"expensive” data

e Lesson 2: The rise of standardization, open-
source software, and large geospatial

datasets
e Lesson 3: From software to services

e Lesson 4: Telemetry turns behavior into
data

e Lesson 5: Embedded intelligence in services

* Workshop

e Groups take lessons as input and discuss
how they can be applied to plant
phenotyping area

e Groups summarize discussion work and
present in plenum

Thank you!
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Background Information
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About the Speaker: Marcos Vaz Salles

®* Associate Professor, University of
Copenhagen (DIKU)
e Postdoc: Cornell University
e PhD: ETH Zurich

* Expertise: Database Systems
e In-memory databases
e Spatial data
e Information Integration
e Cloud Computing

®* Co-leader of Data Management
Systems (DMS) Lab

* Ongoing Collaborations

e Future Cropping consortium: precision agriculture
e GANDALF consortium: environmental management
e IDAS: Industrial Data Analysis Service

e HIPERFIT center: financial apps, risk management
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